Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385255943> ?p ?o ?g. }
- W4385255943 endingPage "1691" @default.
- W4385255943 startingPage "1668" @default.
- W4385255943 abstract "Hyperspectral image super-resolution, which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation, aims to improve the spatial resolution of the hyperspectral image, which is beneficial for subsequent applications. The development of deep learning has promoted significant progress in hyperspectral image super-resolution, and the powerful expression capabilities of deep neural networks make the predicted results more reliable. Recently, several latest deep learning technologies have made the hyperspectral image super-resolution method explode. However, a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent. To this end, in this survey, we first introduce the concept of hyper-spectral image super-resolution and classify the methods from the perspectives with or without auxiliary information. Then, we review the learning-based methods in three categories, including single hyperspectral image super-resolution, panchromatic-based hyperspectral image super-resolution, and multispectral-based hyperspectral image super-resolution. Subsequently, we summarize the commonly used hyperspectral dataset, and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively. Moreover, we briefly introduce several typical applications of hyperspectral image super-resolution, including ground object classification, urban change detection, and ecosystem monitoring. Finally, we provide the conclusion and challenges in existing learning-based methods, looking forward to potential future research directions." @default.
- W4385255943 created "2023-07-26" @default.
- W4385255943 creator A5040010053 @default.
- W4385255943 creator A5050827965 @default.
- W4385255943 creator A5079920999 @default.
- W4385255943 creator A5091867249 @default.
- W4385255943 date "2023-08-01" @default.
- W4385255943 modified "2023-10-16" @default.
- W4385255943 title "Hyperspectral Image Super-Resolution Meets Deep Learning: A Survey and Perspective" @default.
- W4385255943 cites W1277711400 @default.
- W4385255943 cites W1916874600 @default.
- W4385255943 cites W1986109834 @default.
- W4385255943 cites W1988386267 @default.
- W4385255943 cites W1988952689 @default.
- W4385255943 cites W1990231296 @default.
- W4385255943 cites W2010319424 @default.
- W4385255943 cites W2012946078 @default.
- W4385255943 cites W2021046129 @default.
- W4385255943 cites W2037798659 @default.
- W4385255943 cites W2051543496 @default.
- W4385255943 cites W2058195997 @default.
- W4385255943 cites W2092116045 @default.
- W4385255943 cites W2100109944 @default.
- W4385255943 cites W2117146861 @default.
- W4385255943 cites W2120294666 @default.
- W4385255943 cites W2127495569 @default.
- W4385255943 cites W2149720806 @default.
- W4385255943 cites W2159269332 @default.
- W4385255943 cites W2171108951 @default.
- W4385255943 cites W2221899823 @default.
- W4385255943 cites W2327302159 @default.
- W4385255943 cites W2520430674 @default.
- W4385255943 cites W2533102868 @default.
- W4385255943 cites W2588000623 @default.
- W4385255943 cites W2592312604 @default.
- W4385255943 cites W2607041014 @default.
- W4385255943 cites W2615706402 @default.
- W4385255943 cites W2625894731 @default.
- W4385255943 cites W2748530166 @default.
- W4385255943 cites W2752716059 @default.
- W4385255943 cites W2767522909 @default.
- W4385255943 cites W2771305881 @default.
- W4385255943 cites W2791700545 @default.
- W4385255943 cites W2792111852 @default.
- W4385255943 cites W2792971533 @default.
- W4385255943 cites W2803825432 @default.
- W4385255943 cites W2804744787 @default.
- W4385255943 cites W2892302943 @default.
- W4385255943 cites W2898062170 @default.
- W4385255943 cites W2901677692 @default.
- W4385255943 cites W2902482012 @default.
- W4385255943 cites W2908833896 @default.
- W4385255943 cites W2910457605 @default.
- W4385255943 cites W2914997670 @default.
- W4385255943 cites W2931993473 @default.
- W4385255943 cites W2944395072 @default.
- W4385255943 cites W2945202593 @default.
- W4385255943 cites W2945242228 @default.
- W4385255943 cites W2948475055 @default.
- W4385255943 cites W2948669395 @default.
- W4385255943 cites W2952004563 @default.
- W4385255943 cites W2953308875 @default.
- W4385255943 cites W2953478519 @default.
- W4385255943 cites W2955111813 @default.
- W4385255943 cites W2963284277 @default.
- W4385255943 cites W2963442801 @default.
- W4385255943 cites W2963470893 @default.
- W4385255943 cites W2964101377 @default.
- W4385255943 cites W2964140612 @default.
- W4385255943 cites W2964808389 @default.
- W4385255943 cites W2972330968 @default.
- W4385255943 cites W2980358775 @default.
- W4385255943 cites W2983590628 @default.
- W4385255943 cites W2984684155 @default.
- W4385255943 cites W2984765964 @default.
- W4385255943 cites W2989355516 @default.
- W4385255943 cites W2990162903 @default.
- W4385255943 cites W2993041110 @default.
- W4385255943 cites W2993046696 @default.
- W4385255943 cites W2994033677 @default.
- W4385255943 cites W2995099525 @default.
- W4385255943 cites W2998841120 @default.
- W4385255943 cites W3000573080 @default.
- W4385255943 cites W3003727719 @default.
- W4385255943 cites W3011621723 @default.
- W4385255943 cites W3015378990 @default.
- W4385255943 cites W3016106731 @default.
- W4385255943 cites W3016410830 @default.
- W4385255943 cites W3019893222 @default.
- W4385255943 cites W3027120144 @default.
- W4385255943 cites W3027778336 @default.
- W4385255943 cites W3029812440 @default.
- W4385255943 cites W3033214016 @default.
- W4385255943 cites W3034400067 @default.
- W4385255943 cites W3039186706 @default.
- W4385255943 cites W3043719198 @default.
- W4385255943 cites W3047057232 @default.
- W4385255943 cites W3048175892 @default.