Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385258458> ?p ?o ?g. }
- W4385258458 endingPage "28051" @default.
- W4385258458 startingPage "28036" @default.
- W4385258458 abstract "In powder metallurgy materials, sintered density in Cu-Al alloy plays a critical role in detecting mechanical properties. Experimental measurement of this property is costly and time-consuming. In this study, adaptive boosting decision tree, support vector regression, k-nearest neighbors, extreme gradient boosting, and four multilayer perceptron (MLP) models tuned by resilient backpropagation, Levenberg-Marquardt (LM), scaled conjugate gradient, and Bayesian regularization were employed for predicting powder densification through sintering. Yield strength, Young's modulus, volume variation caused by the phase transformation, hardness, liquid volume, liquidus temperature, the solubility ratio among the liquid phase and the solid phase, sintered temperature, solidus temperature, sintered atmosphere, holding time, compaction pressure, particle size, and specific shape factor were regarded as the input parameters of the suggested models. The cross plot, error distribution curve, and cumulative frequency diagram as graphical tools and average percent relative error (APRE), average absolute percent relative error (AAPRE), root mean square error (RMSE), standard deviation (SD), and coefficient of correlation (R) as the statistical evaluations were utilized to estimate the models' accuracy. All of the developed models were compared with preexisting approaches, and the results exhibited that the developed models in the present work are more precise and valid than the existing ones. The designed MLP-LM model was found to be the most precise approach with AAPRE = 1.292%, APRE = -0.032%, SD = 0.020, RMSE = 0.016, and R = 0.989. Lately, outlier detection was applied performing the leverage technique to detect the suspected data points. The outlier detection discovered that few points are located out of the applicability domain of the proposed MLP-LM model." @default.
- W4385258458 created "2023-07-26" @default.
- W4385258458 creator A5006293953 @default.
- W4385258458 creator A5056073946 @default.
- W4385258458 creator A5073320895 @default.
- W4385258458 creator A5091807952 @default.
- W4385258458 date "2023-07-25" @default.
- W4385258458 modified "2023-09-26" @default.
- W4385258458 title "Modeling of the Sintered Density in Cu-Al Alloy Using Machine Learning Approaches" @default.
- W4385258458 cites W1519043595 @default.
- W4385258458 cites W1964357740 @default.
- W4385258458 cites W1971330976 @default.
- W4385258458 cites W1973364012 @default.
- W4385258458 cites W1977222966 @default.
- W4385258458 cites W1988790447 @default.
- W4385258458 cites W2003670641 @default.
- W4385258458 cites W2009134665 @default.
- W4385258458 cites W2031043235 @default.
- W4385258458 cites W2046086320 @default.
- W4385258458 cites W2071113459 @default.
- W4385258458 cites W2076583998 @default.
- W4385258458 cites W2086433986 @default.
- W4385258458 cites W2087953159 @default.
- W4385258458 cites W2090566334 @default.
- W4385258458 cites W2111514729 @default.
- W4385258458 cites W2114401841 @default.
- W4385258458 cites W2161920802 @default.
- W4385258458 cites W2236623899 @default.
- W4385258458 cites W2284896378 @default.
- W4385258458 cites W2345934610 @default.
- W4385258458 cites W2371638596 @default.
- W4385258458 cites W2398059152 @default.
- W4385258458 cites W2399552244 @default.
- W4385258458 cites W2460951279 @default.
- W4385258458 cites W2513079052 @default.
- W4385258458 cites W2592851210 @default.
- W4385258458 cites W2594894562 @default.
- W4385258458 cites W2600797553 @default.
- W4385258458 cites W2613436601 @default.
- W4385258458 cites W2677585577 @default.
- W4385258458 cites W2743161031 @default.
- W4385258458 cites W2765151473 @default.
- W4385258458 cites W2765676296 @default.
- W4385258458 cites W2776146695 @default.
- W4385258458 cites W2776586487 @default.
- W4385258458 cites W2783389576 @default.
- W4385258458 cites W2791709340 @default.
- W4385258458 cites W2791718738 @default.
- W4385258458 cites W2793763663 @default.
- W4385258458 cites W2800776128 @default.
- W4385258458 cites W2885427655 @default.
- W4385258458 cites W2888661076 @default.
- W4385258458 cites W2912639239 @default.
- W4385258458 cites W2914932628 @default.
- W4385258458 cites W2935339072 @default.
- W4385258458 cites W2949508972 @default.
- W4385258458 cites W2969389191 @default.
- W4385258458 cites W2970085888 @default.
- W4385258458 cites W2970147800 @default.
- W4385258458 cites W2984862309 @default.
- W4385258458 cites W2993387588 @default.
- W4385258458 cites W2998847955 @default.
- W4385258458 cites W3004732066 @default.
- W4385258458 cites W3020856172 @default.
- W4385258458 cites W3040119780 @default.
- W4385258458 cites W3046577225 @default.
- W4385258458 cites W3046859879 @default.
- W4385258458 cites W3091930233 @default.
- W4385258458 cites W3097750993 @default.
- W4385258458 cites W3102476541 @default.
- W4385258458 cites W3208060164 @default.
- W4385258458 cites W4205909042 @default.
- W4385258458 doi "https://doi.org/10.1021/acsomega.2c07278" @default.
- W4385258458 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37576653" @default.
- W4385258458 hasPublicationYear "2023" @default.
- W4385258458 type Work @default.
- W4385258458 citedByCount "0" @default.
- W4385258458 crossrefType "journal-article" @default.
- W4385258458 hasAuthorship W4385258458A5006293953 @default.
- W4385258458 hasAuthorship W4385258458A5056073946 @default.
- W4385258458 hasAuthorship W4385258458A5073320895 @default.
- W4385258458 hasAuthorship W4385258458A5091807952 @default.
- W4385258458 hasBestOaLocation W43852584581 @default.
- W4385258458 hasConcept C105795698 @default.
- W4385258458 hasConcept C139945424 @default.
- W4385258458 hasConcept C192562407 @default.
- W4385258458 hasConcept C22679943 @default.
- W4385258458 hasConcept C33923547 @default.
- W4385258458 hasConceptScore W4385258458C105795698 @default.
- W4385258458 hasConceptScore W4385258458C139945424 @default.
- W4385258458 hasConceptScore W4385258458C192562407 @default.
- W4385258458 hasConceptScore W4385258458C22679943 @default.
- W4385258458 hasConceptScore W4385258458C33923547 @default.
- W4385258458 hasIssue "31" @default.
- W4385258458 hasLocation W43852584581 @default.
- W4385258458 hasLocation W43852584582 @default.
- W4385258458 hasOpenAccess W4385258458 @default.
- W4385258458 hasPrimaryLocation W43852584581 @default.