Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385259809> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4385259809 abstract "Accurately estimating and forecasting building occupancy represents an important tasks for higher level indoor energy management and control routines. Extended availability of public and open datasets reflecting indoor conditions through various sensor measurement and indirect proxies of human activity enable reliable benchmarking of new techniques for pre-processing and learning of occupancy patterns. In this work we present a comparative study between deep learning, such as convolutional neural networks, and conventional machine learning approaches, such as decision trees and random forests, on an a reference occupancy dataset. The various design decision and parametrisation options are discussed. The building occupancy classification task involves generating model outputs for various discrete occupancy categories. Standardised metrics such as accuracy, precision, recall and the F1-score are used for replicable benchmarking of the results. Main finding of the study is that, though generally the deep learning methods offer better overall results, the addition of relevant features (sensors) to the input dataset can yield better results for the conventional machine learning models with significantly lower training time and model size. This results in suitable, fast-inference, models for embedded deployment in physical proximity to the process." @default.
- W4385259809 created "2023-07-26" @default.
- W4385259809 creator A5079563165 @default.
- W4385259809 creator A5081102520 @default.
- W4385259809 creator A5085947212 @default.
- W4385259809 date "2023-06-26" @default.
- W4385259809 modified "2023-10-16" @default.
- W4385259809 title "Evaluation of Deep Learning and Machine Learning Algorithms for Building Occupancy Classification on Open Datasets" @default.
- W4385259809 cites W2139899671 @default.
- W4385259809 cites W2886986190 @default.
- W4385259809 cites W2963117675 @default.
- W4385259809 cites W3017315140 @default.
- W4385259809 cites W3045787429 @default.
- W4385259809 cites W3209650012 @default.
- W4385259809 cites W3210294652 @default.
- W4385259809 cites W4205758702 @default.
- W4385259809 cites W4226433331 @default.
- W4385259809 cites W4283696359 @default.
- W4385259809 cites W4310881796 @default.
- W4385259809 cites W4311633450 @default.
- W4385259809 cites W605527410 @default.
- W4385259809 doi "https://doi.org/10.1109/med59994.2023.10185804" @default.
- W4385259809 hasPublicationYear "2023" @default.
- W4385259809 type Work @default.
- W4385259809 citedByCount "0" @default.
- W4385259809 crossrefType "proceedings-article" @default.
- W4385259809 hasAuthorship W4385259809A5079563165 @default.
- W4385259809 hasAuthorship W4385259809A5081102520 @default.
- W4385259809 hasAuthorship W4385259809A5085947212 @default.
- W4385259809 hasConcept C105339364 @default.
- W4385259809 hasConcept C108583219 @default.
- W4385259809 hasConcept C111919701 @default.
- W4385259809 hasConcept C119857082 @default.
- W4385259809 hasConcept C124101348 @default.
- W4385259809 hasConcept C127413603 @default.
- W4385259809 hasConcept C144133560 @default.
- W4385259809 hasConcept C154945302 @default.
- W4385259809 hasConcept C160331591 @default.
- W4385259809 hasConcept C162853370 @default.
- W4385259809 hasConcept C169258074 @default.
- W4385259809 hasConcept C170154142 @default.
- W4385259809 hasConcept C201995342 @default.
- W4385259809 hasConcept C2776214188 @default.
- W4385259809 hasConcept C2780451532 @default.
- W4385259809 hasConcept C41008148 @default.
- W4385259809 hasConcept C81363708 @default.
- W4385259809 hasConcept C86251818 @default.
- W4385259809 hasConcept C98045186 @default.
- W4385259809 hasConceptScore W4385259809C105339364 @default.
- W4385259809 hasConceptScore W4385259809C108583219 @default.
- W4385259809 hasConceptScore W4385259809C111919701 @default.
- W4385259809 hasConceptScore W4385259809C119857082 @default.
- W4385259809 hasConceptScore W4385259809C124101348 @default.
- W4385259809 hasConceptScore W4385259809C127413603 @default.
- W4385259809 hasConceptScore W4385259809C144133560 @default.
- W4385259809 hasConceptScore W4385259809C154945302 @default.
- W4385259809 hasConceptScore W4385259809C160331591 @default.
- W4385259809 hasConceptScore W4385259809C162853370 @default.
- W4385259809 hasConceptScore W4385259809C169258074 @default.
- W4385259809 hasConceptScore W4385259809C170154142 @default.
- W4385259809 hasConceptScore W4385259809C201995342 @default.
- W4385259809 hasConceptScore W4385259809C2776214188 @default.
- W4385259809 hasConceptScore W4385259809C2780451532 @default.
- W4385259809 hasConceptScore W4385259809C41008148 @default.
- W4385259809 hasConceptScore W4385259809C81363708 @default.
- W4385259809 hasConceptScore W4385259809C86251818 @default.
- W4385259809 hasConceptScore W4385259809C98045186 @default.
- W4385259809 hasLocation W43852598091 @default.
- W4385259809 hasOpenAccess W4385259809 @default.
- W4385259809 hasPrimaryLocation W43852598091 @default.
- W4385259809 hasRelatedWork W2731899572 @default.
- W4385259809 hasRelatedWork W2968586400 @default.
- W4385259809 hasRelatedWork W3116150086 @default.
- W4385259809 hasRelatedWork W3133861977 @default.
- W4385259809 hasRelatedWork W3211546796 @default.
- W4385259809 hasRelatedWork W4200173597 @default.
- W4385259809 hasRelatedWork W4223564025 @default.
- W4385259809 hasRelatedWork W4281616679 @default.
- W4385259809 hasRelatedWork W4312417841 @default.
- W4385259809 hasRelatedWork W4321369474 @default.
- W4385259809 isParatext "false" @default.
- W4385259809 isRetracted "false" @default.
- W4385259809 workType "article" @default.