Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385260057> ?p ?o ?g. }
- W4385260057 endingPage "20" @default.
- W4385260057 startingPage "1" @default.
- W4385260057 abstract "Remote sensing, particularly satellite-based, can play a valuable role in monitoring areas prone to geohazards. The high spatial and temporal coverage provided by satellite data can be used to reconstruct past events and continuously monitor sensitive areas for potential hazards. This paper presents a range of techniques and methods that were applied for in-depth analysis and utilization of Earth observation data, with a particular emphasis on: (1) detecting mining subsidence, where a novel approach is proposed by combining an improved U-Net model and Interferometry Synthetic Aperture Radar (InSAR) technology. The results showed that the Efficient Channel Attention (ECA) U-Net model performed better than the U-Net (baseline) model in terms of Mean Intersection over Union (MIoU) and Intersection over Union (IoU) indicators; (2) monitoring water conservancy and hydropower engineering. The Xiaolangdi multipurpose dam complex was monitored using Small BAsline Subsets (SBAS) InSAR method on Sentinel-1 time series data and four small regions with high deformation rates were identified on the slope of the reservoir bank on the north side. The dam body also showed obvious deformation with a velocity exceeding 60 mm/a; (3) the evaluation of the potential of InSAR results to integrate monitoring and warning systems for valuable heritage and architectural preservation. The overall outcome of these methods showed that the use of Artificial Intelligence (AI) techniques in combination with InSAR data leads to more efficient analysis and interpretation, resulting in improved accuracy and prompt identification of potential hazards; and (4) finally, this study also presents a method for detecting landslides in mountainous regions, using optical imagery. The new temporal landslide detection method is evaluated over a 7-year analysis period and unlike conventional bi-temporal change detection methods, this approach does not depend on any prior-knowledge and can potentially detect landslides over extended periods of time such as decades." @default.
- W4385260057 created "2023-07-26" @default.
- W4385260057 creator A5012841530 @default.
- W4385260057 creator A5031803635 @default.
- W4385260057 creator A5055399138 @default.
- W4385260057 creator A5057265250 @default.
- W4385260057 creator A5059896828 @default.
- W4385260057 creator A5066556659 @default.
- W4385260057 creator A5070286386 @default.
- W4385260057 creator A5072792041 @default.
- W4385260057 creator A5075134165 @default.
- W4385260057 creator A5078984641 @default.
- W4385260057 creator A5086559241 @default.
- W4385260057 creator A5089812166 @default.
- W4385260057 creator A5091679587 @default.
- W4385260057 creator A5092543258 @default.
- W4385260057 date "2023-07-25" @default.
- W4385260057 modified "2023-10-01" @default.
- W4385260057 title "Using machine learning and satellite data from multiple sources to analyze mining, water management, and preservation of cultural heritage" @default.
- W4385260057 cites W1672745209 @default.
- W4385260057 cites W1983186335 @default.
- W4385260057 cites W1991684106 @default.
- W4385260057 cites W2045097799 @default.
- W4385260057 cites W2047029664 @default.
- W4385260057 cites W2058082754 @default.
- W4385260057 cites W2062798124 @default.
- W4385260057 cites W2086359768 @default.
- W4385260057 cites W2092141993 @default.
- W4385260057 cites W2097117768 @default.
- W4385260057 cites W2121773078 @default.
- W4385260057 cites W2141414687 @default.
- W4385260057 cites W2151111086 @default.
- W4385260057 cites W2152657318 @default.
- W4385260057 cites W2161336494 @default.
- W4385260057 cites W2172037674 @default.
- W4385260057 cites W2194775991 @default.
- W4385260057 cites W2265581300 @default.
- W4385260057 cites W2302096746 @default.
- W4385260057 cites W2618530766 @default.
- W4385260057 cites W2774320778 @default.
- W4385260057 cites W2775127113 @default.
- W4385260057 cites W2775427771 @default.
- W4385260057 cites W2793831793 @default.
- W4385260057 cites W2794274366 @default.
- W4385260057 cites W2896857663 @default.
- W4385260057 cites W2904122576 @default.
- W4385260057 cites W2907663452 @default.
- W4385260057 cites W2928870406 @default.
- W4385260057 cites W2945667213 @default.
- W4385260057 cites W2945861368 @default.
- W4385260057 cites W3002073658 @default.
- W4385260057 cites W3010863083 @default.
- W4385260057 cites W3018020455 @default.
- W4385260057 cites W3026855943 @default.
- W4385260057 cites W3033097784 @default.
- W4385260057 cites W3034552520 @default.
- W4385260057 cites W3054091620 @default.
- W4385260057 cites W3083624172 @default.
- W4385260057 cites W3095524684 @default.
- W4385260057 cites W3096889504 @default.
- W4385260057 cites W3106250896 @default.
- W4385260057 cites W3111050907 @default.
- W4385260057 cites W3132400172 @default.
- W4385260057 cites W3132766222 @default.
- W4385260057 cites W3133392705 @default.
- W4385260057 cites W3170871988 @default.
- W4385260057 cites W3194730353 @default.
- W4385260057 cites W3208993845 @default.
- W4385260057 cites W4205324960 @default.
- W4385260057 doi "https://doi.org/10.1080/10095020.2023.2234008" @default.
- W4385260057 hasPublicationYear "2023" @default.
- W4385260057 type Work @default.
- W4385260057 citedByCount "0" @default.
- W4385260057 crossrefType "journal-article" @default.
- W4385260057 hasAuthorship W4385260057A5012841530 @default.
- W4385260057 hasAuthorship W4385260057A5031803635 @default.
- W4385260057 hasAuthorship W4385260057A5055399138 @default.
- W4385260057 hasAuthorship W4385260057A5057265250 @default.
- W4385260057 hasAuthorship W4385260057A5059896828 @default.
- W4385260057 hasAuthorship W4385260057A5066556659 @default.
- W4385260057 hasAuthorship W4385260057A5070286386 @default.
- W4385260057 hasAuthorship W4385260057A5072792041 @default.
- W4385260057 hasAuthorship W4385260057A5075134165 @default.
- W4385260057 hasAuthorship W4385260057A5078984641 @default.
- W4385260057 hasAuthorship W4385260057A5086559241 @default.
- W4385260057 hasAuthorship W4385260057A5089812166 @default.
- W4385260057 hasAuthorship W4385260057A5091679587 @default.
- W4385260057 hasAuthorship W4385260057A5092543258 @default.
- W4385260057 hasBestOaLocation W43852600571 @default.
- W4385260057 hasConcept C111368507 @default.
- W4385260057 hasConcept C119599485 @default.
- W4385260057 hasConcept C124101348 @default.
- W4385260057 hasConcept C12725497 @default.
- W4385260057 hasConcept C127313418 @default.
- W4385260057 hasConcept C127413603 @default.
- W4385260057 hasConcept C14279187 @default.
- W4385260057 hasConcept C146978453 @default.
- W4385260057 hasConcept C166212672 @default.