Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385261542> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4385261542 abstract "Soil NIR spectral absorbance/reflectance libraries are utilized towards improving agricultural production and analysis of soil properties which are key prerequisite for agroecological balance and environmental sustainability. Carbonates in particular, represent a soil property which is mostly affected even by mild, let alone extreme, changes of environmental conditions during climate change. In this study we propose a rapid and efficient way to predict carbonates content in soil by means of FT NIR reflectance spectroscopy and by use of deep learning methods. We exploited multiple machine learning methods, such as: 1) a MLP Regressor and 2) a CNN and compare their performance with other traditional ML algorithms such as PLSR, Cubist and SVM on the combined dataset of two NIR spectral libraries: KSSL (USDA), a dataset of soil samples reflectance spectra collected nationwide, and LUCAS TopSoil (European Soil Library) which contains soil sample absorbance spectra from all over the European Union, and use them to predict carbonate content on never before seen soil samples. Soil samples in KSSL and in TopSoil spectral libraries were acquired in the spectral region of visNIR, however in this study, only the NIR spectral region was utilized. Quantification of carbonates by means of Xray Diffraction is in good agreement with the volumetric method and the MLP prediction. Our work contributes to rapid carbonates content prediction in soil samples in cases where: 1) no volumetric method is available and 2) only NIR spectra absorbance data are available. Up till now and to the best of our knowledge, there exists no other study, that presents a prediction model trained on such an extensive dataset with such promising results on unseen data, undoubtedly supporting the notion that deep learning models present excellent prediction tools for soil carbonates content." @default.
- W4385261542 created "2023-07-26" @default.
- W4385261542 creator A5004911379 @default.
- W4385261542 creator A5092543554 @default.
- W4385261542 date "2023-07-23" @default.
- W4385261542 modified "2023-09-25" @default.
- W4385261542 title "Rapid detection of soil carbonates by means of NIR spectroscopy, deep learning methods and phase quantification by powder Xray diffraction" @default.
- W4385261542 doi "https://doi.org/10.48550/arxiv.2307.12341" @default.
- W4385261542 hasPublicationYear "2023" @default.
- W4385261542 type Work @default.
- W4385261542 citedByCount "0" @default.
- W4385261542 crossrefType "posted-content" @default.
- W4385261542 hasAuthorship W4385261542A5004911379 @default.
- W4385261542 hasAuthorship W4385261542A5092543554 @default.
- W4385261542 hasBestOaLocation W43852615421 @default.
- W4385261542 hasConcept C105639569 @default.
- W4385261542 hasConcept C121332964 @default.
- W4385261542 hasConcept C144133560 @default.
- W4385261542 hasConcept C154945302 @default.
- W4385261542 hasConcept C159390177 @default.
- W4385261542 hasConcept C159750122 @default.
- W4385261542 hasConcept C169258074 @default.
- W4385261542 hasConcept C185592680 @default.
- W4385261542 hasConcept C20529654 @default.
- W4385261542 hasConcept C2910001868 @default.
- W4385261542 hasConcept C32891209 @default.
- W4385261542 hasConcept C39432304 @default.
- W4385261542 hasConcept C41008148 @default.
- W4385261542 hasConcept C43571822 @default.
- W4385261542 hasConcept C43617362 @default.
- W4385261542 hasConcept C50516716 @default.
- W4385261542 hasConcept C62520636 @default.
- W4385261542 hasConcept C98015330 @default.
- W4385261542 hasConceptScore W4385261542C105639569 @default.
- W4385261542 hasConceptScore W4385261542C121332964 @default.
- W4385261542 hasConceptScore W4385261542C144133560 @default.
- W4385261542 hasConceptScore W4385261542C154945302 @default.
- W4385261542 hasConceptScore W4385261542C159390177 @default.
- W4385261542 hasConceptScore W4385261542C159750122 @default.
- W4385261542 hasConceptScore W4385261542C169258074 @default.
- W4385261542 hasConceptScore W4385261542C185592680 @default.
- W4385261542 hasConceptScore W4385261542C20529654 @default.
- W4385261542 hasConceptScore W4385261542C2910001868 @default.
- W4385261542 hasConceptScore W4385261542C32891209 @default.
- W4385261542 hasConceptScore W4385261542C39432304 @default.
- W4385261542 hasConceptScore W4385261542C41008148 @default.
- W4385261542 hasConceptScore W4385261542C43571822 @default.
- W4385261542 hasConceptScore W4385261542C43617362 @default.
- W4385261542 hasConceptScore W4385261542C50516716 @default.
- W4385261542 hasConceptScore W4385261542C62520636 @default.
- W4385261542 hasConceptScore W4385261542C98015330 @default.
- W4385261542 hasLocation W43852615421 @default.
- W4385261542 hasOpenAccess W4385261542 @default.
- W4385261542 hasPrimaryLocation W43852615421 @default.
- W4385261542 hasRelatedWork W1483489980 @default.
- W4385261542 hasRelatedWork W1963890359 @default.
- W4385261542 hasRelatedWork W2001903857 @default.
- W4385261542 hasRelatedWork W2007160650 @default.
- W4385261542 hasRelatedWork W2023754690 @default.
- W4385261542 hasRelatedWork W2045406623 @default.
- W4385261542 hasRelatedWork W2059471690 @default.
- W4385261542 hasRelatedWork W2088795889 @default.
- W4385261542 hasRelatedWork W2204720660 @default.
- W4385261542 hasRelatedWork W2730644128 @default.
- W4385261542 isParatext "false" @default.
- W4385261542 isRetracted "false" @default.
- W4385261542 workType "article" @default.