Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385264179> ?p ?o ?g. }
- W4385264179 abstract "Multifidelity modeling is a technique for fusing the information from two or more datasets into one model. It is particularly advantageous when one dataset contains few accurate results and the other contains many less accurate results. Within the context of modeling potential energy surfaces, the low-fidelity dataset can be made up of a large number of inexpensive energy computations that provide adequate coverage of the N-dimensional space spanned by the molecular internal coordinates. The high-fidelity dataset can provide fewer but more accurate electronic energies for the molecule in question. Here, we compare the performance of several neural network-based approaches to multifidelity modeling. We show that the four methods (dual, Δ-learning, weight transfer, and Meng-Karniadakis neural networks) outperform a traditional implementation of a neural network, given the same amount of training data. We also show that the Δ-learning approach is the most practical and tends to provide the most accurate model." @default.
- W4385264179 created "2023-07-27" @default.
- W4385264179 creator A5033633287 @default.
- W4385264179 creator A5051564941 @default.
- W4385264179 creator A5083381055 @default.
- W4385264179 date "2023-07-26" @default.
- W4385264179 modified "2023-09-27" @default.
- W4385264179 title "Comparison of multifidelity machine learning models for potential energy surfaces" @default.
- W4385264179 cites W1964882117 @default.
- W4385264179 cites W1971044734 @default.
- W4385264179 cites W1974223875 @default.
- W4385264179 cites W1992727072 @default.
- W4385264179 cites W1998860313 @default.
- W4385264179 cites W2016770622 @default.
- W4385264179 cites W2030280844 @default.
- W4385264179 cites W2038451118 @default.
- W4385264179 cites W2048195126 @default.
- W4385264179 cites W2067050455 @default.
- W4385264179 cites W2068473123 @default.
- W4385264179 cites W2069006374 @default.
- W4385264179 cites W2071267590 @default.
- W4385264179 cites W2083253722 @default.
- W4385264179 cites W2093625674 @default.
- W4385264179 cites W2165698076 @default.
- W4385264179 cites W2508146432 @default.
- W4385264179 cites W2586938721 @default.
- W4385264179 cites W2595516356 @default.
- W4385264179 cites W2792351009 @default.
- W4385264179 cites W2919958648 @default.
- W4385264179 cites W2922075711 @default.
- W4385264179 cites W2935741399 @default.
- W4385264179 cites W2951845929 @default.
- W4385264179 cites W2954088480 @default.
- W4385264179 cites W2955097063 @default.
- W4385264179 cites W2978089578 @default.
- W4385264179 cites W3024385728 @default.
- W4385264179 cites W3033461492 @default.
- W4385264179 cites W3086356742 @default.
- W4385264179 cites W3090555547 @default.
- W4385264179 cites W3100203441 @default.
- W4385264179 cites W3122700309 @default.
- W4385264179 cites W3125461396 @default.
- W4385264179 cites W3128933281 @default.
- W4385264179 cites W3162848891 @default.
- W4385264179 cites W4200516400 @default.
- W4385264179 cites W4294754517 @default.
- W4385264179 cites W4318484842 @default.
- W4385264179 doi "https://doi.org/10.1063/5.0158919" @default.
- W4385264179 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37493132" @default.
- W4385264179 hasPublicationYear "2023" @default.
- W4385264179 type Work @default.
- W4385264179 citedByCount "0" @default.
- W4385264179 crossrefType "journal-article" @default.
- W4385264179 hasAuthorship W4385264179A5033633287 @default.
- W4385264179 hasAuthorship W4385264179A5051564941 @default.
- W4385264179 hasAuthorship W4385264179A5083381055 @default.
- W4385264179 hasBestOaLocation W43852641791 @default.
- W4385264179 hasConcept C105795698 @default.
- W4385264179 hasConcept C11413529 @default.
- W4385264179 hasConcept C119857082 @default.
- W4385264179 hasConcept C124952713 @default.
- W4385264179 hasConcept C142362112 @default.
- W4385264179 hasConcept C150899416 @default.
- W4385264179 hasConcept C151730666 @default.
- W4385264179 hasConcept C154945302 @default.
- W4385264179 hasConcept C186370098 @default.
- W4385264179 hasConcept C2776459999 @default.
- W4385264179 hasConcept C2779343474 @default.
- W4385264179 hasConcept C2780980858 @default.
- W4385264179 hasConcept C33923547 @default.
- W4385264179 hasConcept C41008148 @default.
- W4385264179 hasConcept C45374587 @default.
- W4385264179 hasConcept C50644808 @default.
- W4385264179 hasConcept C76155785 @default.
- W4385264179 hasConcept C86803240 @default.
- W4385264179 hasConceptScore W4385264179C105795698 @default.
- W4385264179 hasConceptScore W4385264179C11413529 @default.
- W4385264179 hasConceptScore W4385264179C119857082 @default.
- W4385264179 hasConceptScore W4385264179C124952713 @default.
- W4385264179 hasConceptScore W4385264179C142362112 @default.
- W4385264179 hasConceptScore W4385264179C150899416 @default.
- W4385264179 hasConceptScore W4385264179C151730666 @default.
- W4385264179 hasConceptScore W4385264179C154945302 @default.
- W4385264179 hasConceptScore W4385264179C186370098 @default.
- W4385264179 hasConceptScore W4385264179C2776459999 @default.
- W4385264179 hasConceptScore W4385264179C2779343474 @default.
- W4385264179 hasConceptScore W4385264179C2780980858 @default.
- W4385264179 hasConceptScore W4385264179C33923547 @default.
- W4385264179 hasConceptScore W4385264179C41008148 @default.
- W4385264179 hasConceptScore W4385264179C45374587 @default.
- W4385264179 hasConceptScore W4385264179C50644808 @default.
- W4385264179 hasConceptScore W4385264179C76155785 @default.
- W4385264179 hasConceptScore W4385264179C86803240 @default.
- W4385264179 hasFunder F4320306084 @default.
- W4385264179 hasIssue "4" @default.
- W4385264179 hasLocation W43852641791 @default.
- W4385264179 hasLocation W43852641792 @default.
- W4385264179 hasOpenAccess W4385264179 @default.
- W4385264179 hasPrimaryLocation W43852641791 @default.
- W4385264179 hasRelatedWork W2946016983 @default.