Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385267415> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4385267415 endingPage "664" @default.
- W4385267415 startingPage "655" @default.
- W4385267415 abstract "This study aimed to carry out a comparative analysis of machine learning techniques via data mining in a company in the railway segment located in the state of Paraná, Brazil. To achieve the goal of reducing emissions of polluting gases that impact future climate changes, information was first collected regarding fuel consumption over the years from 2006 to 2020. Then, data mining techniques were applied to identify patterns, clean and prepare the collected base, then the machine learning techniques of K-Nearest Neighbors (KNN), Random Forest and Support Vector Machine (SVM) were applied. The selection of the best technique was based on the smallest error in the test set. As a result, it was possible to identify that the KNN was the technique with the lowest error compared to the others analyzed, being the one chosen to make future forecasts for the company under study." @default.
- W4385267415 created "2023-07-27" @default.
- W4385267415 creator A5012575621 @default.
- W4385267415 creator A5031823218 @default.
- W4385267415 creator A5050219180 @default.
- W4385267415 creator A5076591193 @default.
- W4385267415 creator A5092544891 @default.
- W4385267415 date "2023-01-01" @default.
- W4385267415 modified "2023-09-25" @default.
- W4385267415 title "Comparative Analysis of Machine Learning Techniques via Data Mining in a Railroad Company" @default.
- W4385267415 cites W2025351228 @default.
- W4385267415 cites W2153058748 @default.
- W4385267415 cites W252762196 @default.
- W4385267415 cites W2528245812 @default.
- W4385267415 cites W2920856984 @default.
- W4385267415 cites W2951136147 @default.
- W4385267415 cites W3027254160 @default.
- W4385267415 cites W3033789406 @default.
- W4385267415 cites W3048898875 @default.
- W4385267415 cites W3096492632 @default.
- W4385267415 cites W3117372316 @default.
- W4385267415 cites W3184295589 @default.
- W4385267415 cites W4200069593 @default.
- W4385267415 cites W4206652158 @default.
- W4385267415 cites W4206944406 @default.
- W4385267415 cites W4281552705 @default.
- W4385267415 cites W4281563373 @default.
- W4385267415 cites W4282965603 @default.
- W4385267415 cites W4283784913 @default.
- W4385267415 cites W4284691923 @default.
- W4385267415 cites W4284713263 @default.
- W4385267415 cites W4286382587 @default.
- W4385267415 cites W4288051424 @default.
- W4385267415 cites W4289873074 @default.
- W4385267415 cites W4292775096 @default.
- W4385267415 cites W4293060862 @default.
- W4385267415 doi "https://doi.org/10.1007/978-3-031-36121-0_83" @default.
- W4385267415 hasPublicationYear "2023" @default.
- W4385267415 type Work @default.
- W4385267415 citedByCount "0" @default.
- W4385267415 crossrefType "book-chapter" @default.
- W4385267415 hasAuthorship W4385267415A5012575621 @default.
- W4385267415 hasAuthorship W4385267415A5031823218 @default.
- W4385267415 hasAuthorship W4385267415A5050219180 @default.
- W4385267415 hasAuthorship W4385267415A5076591193 @default.
- W4385267415 hasAuthorship W4385267415A5092544891 @default.
- W4385267415 hasConcept C113238511 @default.
- W4385267415 hasConcept C119857082 @default.
- W4385267415 hasConcept C12267149 @default.
- W4385267415 hasConcept C124101348 @default.
- W4385267415 hasConcept C127413603 @default.
- W4385267415 hasConcept C154945302 @default.
- W4385267415 hasConcept C169258074 @default.
- W4385267415 hasConcept C177264268 @default.
- W4385267415 hasConcept C199360897 @default.
- W4385267415 hasConcept C41008148 @default.
- W4385267415 hasConceptScore W4385267415C113238511 @default.
- W4385267415 hasConceptScore W4385267415C119857082 @default.
- W4385267415 hasConceptScore W4385267415C12267149 @default.
- W4385267415 hasConceptScore W4385267415C124101348 @default.
- W4385267415 hasConceptScore W4385267415C127413603 @default.
- W4385267415 hasConceptScore W4385267415C154945302 @default.
- W4385267415 hasConceptScore W4385267415C169258074 @default.
- W4385267415 hasConceptScore W4385267415C177264268 @default.
- W4385267415 hasConceptScore W4385267415C199360897 @default.
- W4385267415 hasConceptScore W4385267415C41008148 @default.
- W4385267415 hasLocation W43852674151 @default.
- W4385267415 hasOpenAccess W4385267415 @default.
- W4385267415 hasPrimaryLocation W43852674151 @default.
- W4385267415 hasRelatedWork W2937631562 @default.
- W4385267415 hasRelatedWork W2985924212 @default.
- W4385267415 hasRelatedWork W3195168932 @default.
- W4385267415 hasRelatedWork W3195610867 @default.
- W4385267415 hasRelatedWork W4298005273 @default.
- W4385267415 hasRelatedWork W4321461874 @default.
- W4385267415 hasRelatedWork W4321636153 @default.
- W4385267415 hasRelatedWork W4327511089 @default.
- W4385267415 hasRelatedWork W4377964522 @default.
- W4385267415 hasRelatedWork W4381414210 @default.
- W4385267415 isParatext "false" @default.
- W4385267415 isRetracted "false" @default.
- W4385267415 workType "book-chapter" @default.