Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385268995> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4385268995 endingPage "78444" @default.
- W4385268995 startingPage "78431" @default.
- W4385268995 abstract "Various website fingerprinting attacks (WF) have been developed to detect anonymous users accessing illegal websites in Tor networks by analyzing Tor traffic. These attacks consider several traffic features, such as packet length, number of packets, and time, to identify users who attempt to access prohibited content. Due to the advance of artificial intelligence (AI) technologies, machine learning or deep learning techniques have been widely adopted for WF to generate an accurate model to break the privacy of illegal users. Nevertheless, such state-of-the-art approaches to WF assumed that entire data from various Tor nodes are collected and trained in a centralized way to generate the model: However, training data sets from Tor nodes may contain sensitive information that the Tor nodes may not want to share. In addition, significant computing and network bottleneck at the centralized server is inevitable in collecting and training various data in a centralized manner. Correspondingly, this paper proposes a novel framework using federated learning (FL) for WF in the Tor network (denoted as FedFingerprinting), enabling Tor nodes to generate the global model collaboratively without exposing their local data sets. Specifically, to alleviate the burden for local training of selected Tor nodes in the FL process, the importance of various handcrafting features used for WF is firstly evaluated through the analysis of the accuracy of features under the ensemble of tree machine learning methods. Then, to balance the accuracy and training time, the combination of selected top-ranked features is trained using FL approaches rather than raw data in the model. Moreover, considering the local model accuracy of each Tor node, effective Tor node selection for the FL process is also designed. Finally, under closed-world settings with the real-world Tor data sets, we empirically demonstrate the comparisons of the proposed FedFingerprinting with raw data and feature selection compared to various benchmarks in terms of the training time and accuracy. Then, the superior performance of the FedFingerprinting with Tor node selection is evaluated in terms of convergence speed." @default.
- W4385268995 created "2023-07-27" @default.
- W4385268995 creator A5020202813 @default.
- W4385268995 creator A5070844002 @default.
- W4385268995 creator A5078312259 @default.
- W4385268995 date "2023-01-01" @default.
- W4385268995 modified "2023-09-25" @default.
- W4385268995 title "FedFingerprinting: A Federated Learning Approach to Website Fingerprinting Attacks in Tor Networks" @default.
- W4385268995 cites W1655958391 @default.
- W4385268995 cites W1967376787 @default.
- W4385268995 cites W2084330204 @default.
- W4385268995 cites W2108217512 @default.
- W4385268995 cites W2272516773 @default.
- W4385268995 cites W2743999154 @default.
- W4385268995 cites W2911964244 @default.
- W4385268995 cites W2913094719 @default.
- W4385268995 cites W2919115771 @default.
- W4385268995 cites W2938421456 @default.
- W4385268995 cites W2963704216 @default.
- W4385268995 cites W2964602598 @default.
- W4385268995 cites W2966622305 @default.
- W4385268995 cites W2977072935 @default.
- W4385268995 cites W2978422189 @default.
- W4385268995 cites W2982407593 @default.
- W4385268995 cites W2989013751 @default.
- W4385268995 cites W3005429940 @default.
- W4385268995 cites W3015636663 @default.
- W4385268995 cites W3047304572 @default.
- W4385268995 cites W3086590218 @default.
- W4385268995 cites W3093816478 @default.
- W4385268995 cites W3095611529 @default.
- W4385268995 cites W3104102522 @default.
- W4385268995 cites W3107100345 @default.
- W4385268995 cites W3126821262 @default.
- W4385268995 cites W3127190257 @default.
- W4385268995 cites W3182702682 @default.
- W4385268995 cites W4212829600 @default.
- W4385268995 cites W4225696825 @default.
- W4385268995 doi "https://doi.org/10.1109/access.2023.3299174" @default.
- W4385268995 hasPublicationYear "2023" @default.
- W4385268995 type Work @default.
- W4385268995 citedByCount "0" @default.
- W4385268995 crossrefType "journal-article" @default.
- W4385268995 hasAuthorship W4385268995A5020202813 @default.
- W4385268995 hasAuthorship W4385268995A5070844002 @default.
- W4385268995 hasAuthorship W4385268995A5078312259 @default.
- W4385268995 hasBestOaLocation W43852689951 @default.
- W4385268995 hasConcept C111919701 @default.
- W4385268995 hasConcept C119857082 @default.
- W4385268995 hasConcept C124101348 @default.
- W4385268995 hasConcept C149635348 @default.
- W4385268995 hasConcept C154945302 @default.
- W4385268995 hasConcept C158379750 @default.
- W4385268995 hasConcept C204679922 @default.
- W4385268995 hasConcept C2780513914 @default.
- W4385268995 hasConcept C31258907 @default.
- W4385268995 hasConcept C38652104 @default.
- W4385268995 hasConcept C41008148 @default.
- W4385268995 hasConcept C98045186 @default.
- W4385268995 hasConceptScore W4385268995C111919701 @default.
- W4385268995 hasConceptScore W4385268995C119857082 @default.
- W4385268995 hasConceptScore W4385268995C124101348 @default.
- W4385268995 hasConceptScore W4385268995C149635348 @default.
- W4385268995 hasConceptScore W4385268995C154945302 @default.
- W4385268995 hasConceptScore W4385268995C158379750 @default.
- W4385268995 hasConceptScore W4385268995C204679922 @default.
- W4385268995 hasConceptScore W4385268995C2780513914 @default.
- W4385268995 hasConceptScore W4385268995C31258907 @default.
- W4385268995 hasConceptScore W4385268995C38652104 @default.
- W4385268995 hasConceptScore W4385268995C41008148 @default.
- W4385268995 hasConceptScore W4385268995C98045186 @default.
- W4385268995 hasFunder F4320323103 @default.
- W4385268995 hasLocation W43852689951 @default.
- W4385268995 hasOpenAccess W4385268995 @default.
- W4385268995 hasPrimaryLocation W43852689951 @default.
- W4385268995 hasRelatedWork W2353647904 @default.
- W4385268995 hasRelatedWork W2354251581 @default.
- W4385268995 hasRelatedWork W2357461155 @default.
- W4385268995 hasRelatedWork W2384129116 @default.
- W4385268995 hasRelatedWork W2766721049 @default.
- W4385268995 hasRelatedWork W2961085424 @default.
- W4385268995 hasRelatedWork W3145924829 @default.
- W4385268995 hasRelatedWork W3152267458 @default.
- W4385268995 hasRelatedWork W4214922564 @default.
- W4385268995 hasRelatedWork W4297496173 @default.
- W4385268995 hasVolume "11" @default.
- W4385268995 isParatext "false" @default.
- W4385268995 isRetracted "false" @default.
- W4385268995 workType "article" @default.