Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385278314> ?p ?o ?g. }
- W4385278314 endingPage "6665" @default.
- W4385278314 startingPage "6665" @default.
- W4385278314 abstract "This paper proposes a novel vehicle state estimation (VSE) method that combines a physics-informed neural network (PINN) and an unscented Kalman filter on manifolds (UKF-M). This VSE aimed to achieve inertial measurement unit (IMU) calibration and provide comprehensive information on the vehicle's dynamic state. The proposed method leverages a PINN to eliminate IMU drift by constraining the loss function with ordinary differential equations (ODEs). Then, the UKF-M is used to estimate the 3D attitude, velocity, and position of the vehicle more accurately using a six-degrees-of-freedom vehicle model. Experimental results demonstrate that the proposed PINN method can learn from multiple sensors and reduce the impact of sensor biases by constraining the ODEs without affecting the sensor characteristics. Compared to the UKF-M algorithm alone, our VSE can better estimate vehicle states. The proposed method has the potential to automatically reduce the impact of sensor drift during vehicle operation, making it more suitable for real-world applications." @default.
- W4385278314 created "2023-07-27" @default.
- W4385278314 creator A5009863426 @default.
- W4385278314 creator A5012324763 @default.
- W4385278314 creator A5057276700 @default.
- W4385278314 creator A5069251649 @default.
- W4385278314 creator A5084617823 @default.
- W4385278314 date "2023-07-25" @default.
- W4385278314 modified "2023-09-30" @default.
- W4385278314 title "Vehicle State Estimation Combining Physics-Informed Neural Network and Unscented Kalman Filtering on Manifolds" @default.
- W4385278314 cites W1592601589 @default.
- W4385278314 cites W2011586160 @default.
- W4385278314 cites W2020934227 @default.
- W4385278314 cites W2030574464 @default.
- W4385278314 cites W2034840611 @default.
- W4385278314 cites W2036165522 @default.
- W4385278314 cites W2041339162 @default.
- W4385278314 cites W2043228206 @default.
- W4385278314 cites W2155653863 @default.
- W4385278314 cites W2176887674 @default.
- W4385278314 cites W2515285644 @default.
- W4385278314 cites W2549139847 @default.
- W4385278314 cites W2604425362 @default.
- W4385278314 cites W2759375001 @default.
- W4385278314 cites W2767227502 @default.
- W4385278314 cites W2791979048 @default.
- W4385278314 cites W2802574842 @default.
- W4385278314 cites W2899283552 @default.
- W4385278314 cites W2923554444 @default.
- W4385278314 cites W2949411810 @default.
- W4385278314 cites W2955284104 @default.
- W4385278314 cites W2963906196 @default.
- W4385278314 cites W2972587179 @default.
- W4385278314 cites W3004384589 @default.
- W4385278314 cites W3009122075 @default.
- W4385278314 cites W3012386190 @default.
- W4385278314 cites W3016151364 @default.
- W4385278314 cites W3017305623 @default.
- W4385278314 cites W3020952481 @default.
- W4385278314 cites W3028413446 @default.
- W4385278314 cites W3088033175 @default.
- W4385278314 cites W3095580889 @default.
- W4385278314 cites W3135204376 @default.
- W4385278314 cites W3135266120 @default.
- W4385278314 cites W3135401435 @default.
- W4385278314 cites W3145073221 @default.
- W4385278314 cites W3165231051 @default.
- W4385278314 cites W3176583925 @default.
- W4385278314 cites W3185680687 @default.
- W4385278314 cites W3194366730 @default.
- W4385278314 cites W3209374526 @default.
- W4385278314 cites W3211524239 @default.
- W4385278314 cites W4210673880 @default.
- W4385278314 cites W4225995462 @default.
- W4385278314 cites W4283386123 @default.
- W4385278314 cites W4285290430 @default.
- W4385278314 cites W4288039037 @default.
- W4385278314 cites W4295067099 @default.
- W4385278314 cites W4296307128 @default.
- W4385278314 cites W4312737473 @default.
- W4385278314 cites W4316926549 @default.
- W4385278314 cites W4362579132 @default.
- W4385278314 doi "https://doi.org/10.3390/s23156665" @default.
- W4385278314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37571450" @default.
- W4385278314 hasPublicationYear "2023" @default.
- W4385278314 type Work @default.
- W4385278314 citedByCount "0" @default.
- W4385278314 crossrefType "journal-article" @default.
- W4385278314 hasAuthorship W4385278314A5009863426 @default.
- W4385278314 hasAuthorship W4385278314A5012324763 @default.
- W4385278314 hasAuthorship W4385278314A5057276700 @default.
- W4385278314 hasAuthorship W4385278314A5069251649 @default.
- W4385278314 hasAuthorship W4385278314A5084617823 @default.
- W4385278314 hasBestOaLocation W43852783141 @default.
- W4385278314 hasConcept C11413529 @default.
- W4385278314 hasConcept C121332964 @default.
- W4385278314 hasConcept C127413603 @default.
- W4385278314 hasConcept C133731056 @default.
- W4385278314 hasConcept C146978453 @default.
- W4385278314 hasConcept C154945302 @default.
- W4385278314 hasConcept C157286648 @default.
- W4385278314 hasConcept C173386949 @default.
- W4385278314 hasConcept C206833254 @default.
- W4385278314 hasConcept C208081375 @default.
- W4385278314 hasConcept C2775924081 @default.
- W4385278314 hasConcept C28826006 @default.
- W4385278314 hasConcept C33923547 @default.
- W4385278314 hasConcept C34862557 @default.
- W4385278314 hasConcept C41008148 @default.
- W4385278314 hasConcept C47446073 @default.
- W4385278314 hasConcept C48103436 @default.
- W4385278314 hasConcept C50644808 @default.
- W4385278314 hasConcept C62520636 @default.
- W4385278314 hasConcept C79061980 @default.
- W4385278314 hasConcept C93226319 @default.
- W4385278314 hasConceptScore W4385278314C11413529 @default.
- W4385278314 hasConceptScore W4385278314C121332964 @default.
- W4385278314 hasConceptScore W4385278314C127413603 @default.