Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385280456> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4385280456 endingPage "564" @default.
- W4385280456 startingPage "554" @default.
- W4385280456 abstract "Composite materials offer a wide range of advantages in terms of strength, weight, and versatility, making them a popular choice for structural applications. The performance of composite structures depends not only on the material constituents but also on the topology and arrangement of these components. However, designing an optimal configuration that maximizes the desired performance metrics can be a challenging task due to the large design space and complex interactions between the components. It presents a novel approach for optimizing the multi-component topology and material orientation design of composite structures using artificial intelligence (AI) techniques. The objective is to develop an automated and efficient methodology that can identify the most optimal configuration for a given set of performance requirements. The proposed methodology combines AI algorithms, such as genetic algorithms and machine learning, with advanced computational modeling techniques. The genetic algorithms are employed to explore the design space and search for the best combination of topology and material orientations. Concurrently, machine learning techniques are utilized to model the complex relationships between the design variables and performance metrics, enabling the identification of design patterns and accelerating the optimization process.
 To achieve this, a comprehensive framework is established, encompassing the generation of an initial population of candidate designs, evaluation of their performance using numerical simulations or experimental testing, application of genetic algorithms to iteratively evolve the population by selecting the fittest designs and introducing variations, and utilization of machine learning models to predict the performance of new designs and guide the optimization process. The effectiveness of the proposed methodology is demonstrated through a case study involving the design of a composite aerospace structure. The results reveal that the AI-based optimization approach significantly outperforms traditional trial-and-error methods, leading to improved performance metrics such as strength, stiffness, and weight.
 The findings have significant implications for the design and manufacturing of composite structures in various industries, including aerospace, automotive, and civil engineering. The automated optimization process enabled by AI techniques can efficiently explore the design space, identify innovative solutions, and ultimately enhance the overall performance of composite structures." @default.
- W4385280456 created "2023-07-27" @default.
- W4385280456 creator A5042458750 @default.
- W4385280456 date "2018-12-30" @default.
- W4385280456 modified "2023-09-23" @default.
- W4385280456 title "Optimization of Multi-Component Topology and Material Orientation Design of Composite Structures Using AI" @default.
- W4385280456 doi "https://doi.org/10.17762/turcomat.v9i2.13859" @default.
- W4385280456 hasPublicationYear "2018" @default.
- W4385280456 type Work @default.
- W4385280456 citedByCount "0" @default.
- W4385280456 crossrefType "journal-article" @default.
- W4385280456 hasAuthorship W4385280456A5042458750 @default.
- W4385280456 hasBestOaLocation W43852804561 @default.
- W4385280456 hasConcept C111919701 @default.
- W4385280456 hasConcept C119599485 @default.
- W4385280456 hasConcept C119857082 @default.
- W4385280456 hasConcept C121332964 @default.
- W4385280456 hasConcept C127413603 @default.
- W4385280456 hasConcept C135628077 @default.
- W4385280456 hasConcept C144024400 @default.
- W4385280456 hasConcept C146978453 @default.
- W4385280456 hasConcept C149923435 @default.
- W4385280456 hasConcept C154945302 @default.
- W4385280456 hasConcept C168167062 @default.
- W4385280456 hasConcept C177264268 @default.
- W4385280456 hasConcept C184720557 @default.
- W4385280456 hasConcept C189216461 @default.
- W4385280456 hasConcept C199360897 @default.
- W4385280456 hasConcept C204323151 @default.
- W4385280456 hasConcept C2908647359 @default.
- W4385280456 hasConcept C41008148 @default.
- W4385280456 hasConcept C66938386 @default.
- W4385280456 hasConcept C8880873 @default.
- W4385280456 hasConcept C97355855 @default.
- W4385280456 hasConcept C98045186 @default.
- W4385280456 hasConceptScore W4385280456C111919701 @default.
- W4385280456 hasConceptScore W4385280456C119599485 @default.
- W4385280456 hasConceptScore W4385280456C119857082 @default.
- W4385280456 hasConceptScore W4385280456C121332964 @default.
- W4385280456 hasConceptScore W4385280456C127413603 @default.
- W4385280456 hasConceptScore W4385280456C135628077 @default.
- W4385280456 hasConceptScore W4385280456C144024400 @default.
- W4385280456 hasConceptScore W4385280456C146978453 @default.
- W4385280456 hasConceptScore W4385280456C149923435 @default.
- W4385280456 hasConceptScore W4385280456C154945302 @default.
- W4385280456 hasConceptScore W4385280456C168167062 @default.
- W4385280456 hasConceptScore W4385280456C177264268 @default.
- W4385280456 hasConceptScore W4385280456C184720557 @default.
- W4385280456 hasConceptScore W4385280456C189216461 @default.
- W4385280456 hasConceptScore W4385280456C199360897 @default.
- W4385280456 hasConceptScore W4385280456C204323151 @default.
- W4385280456 hasConceptScore W4385280456C2908647359 @default.
- W4385280456 hasConceptScore W4385280456C41008148 @default.
- W4385280456 hasConceptScore W4385280456C66938386 @default.
- W4385280456 hasConceptScore W4385280456C8880873 @default.
- W4385280456 hasConceptScore W4385280456C97355855 @default.
- W4385280456 hasConceptScore W4385280456C98045186 @default.
- W4385280456 hasIssue "2" @default.
- W4385280456 hasLocation W43852804561 @default.
- W4385280456 hasOpenAccess W4385280456 @default.
- W4385280456 hasPrimaryLocation W43852804561 @default.
- W4385280456 hasRelatedWork W2081304691 @default.
- W4385280456 hasRelatedWork W2151897444 @default.
- W4385280456 hasRelatedWork W2379533788 @default.
- W4385280456 hasRelatedWork W2961085424 @default.
- W4385280456 hasRelatedWork W3018492858 @default.
- W4385280456 hasRelatedWork W3144947207 @default.
- W4385280456 hasRelatedWork W4286629047 @default.
- W4385280456 hasRelatedWork W4306321456 @default.
- W4385280456 hasRelatedWork W4306674287 @default.
- W4385280456 hasRelatedWork W4224009465 @default.
- W4385280456 hasVolume "9" @default.
- W4385280456 isParatext "false" @default.
- W4385280456 isRetracted "false" @default.
- W4385280456 workType "article" @default.