Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385280891> ?p ?o ?g. }
- W4385280891 abstract "We perform a thorough and complete analysis of the Anderson localization transition on several models of random graphs with regular and random connectivity. The unprecedented precision and abundance of our exact diagonalization data (both spectra and eigenstates), together with new finite size scaling and statistical analysis of the graph ensembles, unveils a universal behavior which is described by two simple, integer, scaling exponents. A by-product of such analysis is a reconciliation of the tension between the results of perturbation theory coming from strong disorder and earlier numerical works, which seemed to suggest that there should be a non-ergodic region above a given value of disorder W_{E} <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:msub><mml:mi>W</mml:mi><mml:mi>E</mml:mi></mml:msub></mml:math> which is strictly less than the Anderson localization critical disorder W_C <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:msub><mml:mi>W</mml:mi><mml:mi>C</mml:mi></mml:msub></mml:math> , and that of other works which suggest that there is no such region. We find that, although no separate W_{E} <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:msub><mml:mi>W</mml:mi><mml:mi>E</mml:mi></mml:msub></mml:math> exists from W_C <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:msub><mml:mi>W</mml:mi><mml:mi>C</mml:mi></mml:msub></mml:math> , the length scale at which fully developed ergodicity is found diverges like |W-W_C|^{-1} <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:msup><mml:mrow><mml:mo stretchy=true form=prefix>|</mml:mo><mml:mi>W</mml:mi><mml:mo>−</mml:mo><mml:msub><mml:mi>W</mml:mi><mml:mi>C</mml:mi></mml:msub><mml:mo stretchy=true form=postfix>|</mml:mo></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math> , while the critical length over which delocalization develops is sim |W-W_C|^{-1/2} <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:mo>∼</mml:mo><mml:msup><mml:mrow><mml:mo stretchy=true form=prefix>|</mml:mo><mml:mi>W</mml:mi><mml:mo>−</mml:mo><mml:msub><mml:mi>W</mml:mi><mml:mi>C</mml:mi></mml:msub><mml:mo stretchy=true form=postfix>|</mml:mo></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mi>/</mml:mi><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> . The separation of these two scales at the critical point allows for a true non-ergodic, delocalized region. In addition, by looking at eigenstates and studying leading and sub-leading terms in system size-dependence of participation entropies, we show that the former contain information about the non-ergodicity volume which becomes non-trivial already deep in the delocalized regime. We also discuss the quantitative similarities between the Anderson transition on random graphs and many-body localization transition." @default.
- W4385280891 created "2023-07-27" @default.
- W4385280891 creator A5038340000 @default.
- W4385280891 creator A5051113581 @default.
- W4385280891 creator A5071364408 @default.
- W4385280891 date "2023-08-03" @default.
- W4385280891 modified "2023-10-17" @default.
- W4385280891 title "Universality in Anderson localization on random graphs with varying connectivity" @default.
- W4385280891 cites W1592213313 @default.
- W4385280891 cites W1605912633 @default.
- W4385280891 cites W1632879706 @default.
- W4385280891 cites W1851281829 @default.
- W4385280891 cites W1946865667 @default.
- W4385280891 cites W1967106943 @default.
- W4385280891 cites W1967357729 @default.
- W4385280891 cites W1970830555 @default.
- W4385280891 cites W1970947221 @default.
- W4385280891 cites W1973981407 @default.
- W4385280891 cites W1976143157 @default.
- W4385280891 cites W1986168108 @default.
- W4385280891 cites W1990001655 @default.
- W4385280891 cites W1990965852 @default.
- W4385280891 cites W1997698259 @default.
- W4385280891 cites W1998550051 @default.
- W4385280891 cites W1999423794 @default.
- W4385280891 cites W1999621932 @default.
- W4385280891 cites W2003651966 @default.
- W4385280891 cites W2004532397 @default.
- W4385280891 cites W2010308397 @default.
- W4385280891 cites W2011655084 @default.
- W4385280891 cites W2013500815 @default.
- W4385280891 cites W2013627611 @default.
- W4385280891 cites W2022083710 @default.
- W4385280891 cites W2024788707 @default.
- W4385280891 cites W2039006229 @default.
- W4385280891 cites W2044586796 @default.
- W4385280891 cites W2053097953 @default.
- W4385280891 cites W2056715417 @default.
- W4385280891 cites W2061427237 @default.
- W4385280891 cites W2070040108 @default.
- W4385280891 cites W2070698475 @default.
- W4385280891 cites W2071007296 @default.
- W4385280891 cites W2073848376 @default.
- W4385280891 cites W2074670256 @default.
- W4385280891 cites W2079114328 @default.
- W4385280891 cites W2079747239 @default.
- W4385280891 cites W2080986336 @default.
- W4385280891 cites W2083240980 @default.
- W4385280891 cites W2083276409 @default.
- W4385280891 cites W2084725009 @default.
- W4385280891 cites W2088245140 @default.
- W4385280891 cites W2105920428 @default.
- W4385280891 cites W2110596042 @default.
- W4385280891 cites W2112090702 @default.
- W4385280891 cites W2127488783 @default.
- W4385280891 cites W2134813683 @default.
- W4385280891 cites W2155224358 @default.
- W4385280891 cites W2164898385 @default.
- W4385280891 cites W2207856156 @default.
- W4385280891 cites W2240279350 @default.
- W4385280891 cites W2264002775 @default.
- W4385280891 cites W2282495428 @default.
- W4385280891 cites W2335065757 @default.
- W4385280891 cites W2335477762 @default.
- W4385280891 cites W2340811749 @default.
- W4385280891 cites W2343965582 @default.
- W4385280891 cites W2363293409 @default.
- W4385280891 cites W2375349393 @default.
- W4385280891 cites W2414886814 @default.
- W4385280891 cites W2463002216 @default.
- W4385280891 cites W2463975838 @default.
- W4385280891 cites W2490361730 @default.
- W4385280891 cites W2511854944 @default.
- W4385280891 cites W2515937926 @default.
- W4385280891 cites W2523000403 @default.
- W4385280891 cites W2531375437 @default.
- W4385280891 cites W2549561164 @default.
- W4385280891 cites W2566505556 @default.
- W4385280891 cites W2579737137 @default.
- W4385280891 cites W2607498875 @default.
- W4385280891 cites W2611406150 @default.
- W4385280891 cites W2612380721 @default.
- W4385280891 cites W2622460465 @default.
- W4385280891 cites W2739141244 @default.
- W4385280891 cites W2751613868 @default.
- W4385280891 cites W2755460724 @default.
- W4385280891 cites W2765385994 @default.
- W4385280891 cites W2767545053 @default.
- W4385280891 cites W2805320114 @default.
- W4385280891 cites W2806687966 @default.
- W4385280891 cites W2884860812 @default.
- W4385280891 cites W2896079146 @default.
- W4385280891 cites W2898088511 @default.
- W4385280891 cites W2899489555 @default.
- W4385280891 cites W2899961353 @default.
- W4385280891 cites W2906048993 @default.
- W4385280891 cites W2906150513 @default.
- W4385280891 cites W2914454605 @default.
- W4385280891 cites W2919616696 @default.
- W4385280891 cites W2921299009 @default.