Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385283176> ?p ?o ?g. }
- W4385283176 endingPage "120297" @default.
- W4385283176 startingPage "120297" @default.
- W4385283176 abstract "Functional ultrasound (fUS) imaging is a method for visualizing deep brain activity based on cerebral blood volume changes coupled with neural activity, while functional MRI (fMRI) relies on the blood-oxygenation-level-dependent signal coupled with neural activity. Low-frequency fluctuations (LFF) of fMRI signals during resting-state can be measured by resting-state fMRI (rsfMRI), which allows functional imaging of the whole brain, and the distributions of resting-state network (RSN) can then be estimated from these fluctuations using independent component analysis (ICA). This procedure provides an important method for studying cognitive and psychophysiological diseases affecting specific brain networks. The distributions of RSNs in the brain-wide area has been reported primarily by rsfMRI. RSNs using rsfMRI are generally computed from the time-course of fMRI signals for more than 5 min. However, a recent dynamic functional connectivity study revealed that RSNs are still not perfectly stable even after 10 min. Importantly, fUS has a higher temporal resolution and stronger correlation with neural activity compared with fMRI. Therefore, we hypothesized that fUS applied during the resting-state for a shorter than 5 min would provide similar RSNs compared to fMRI. High temporal resolution rsfUS data were acquired at 10 Hz in awake mice. The quality of the default mode network (DMN), a well-known RSN, was evaluated using signal-noise separation (SNS) applied to different measurement durations of rsfUS. The results showed that the SNS did not change when the measurement duration was increased to more than 210 s. Next, we measured short-duration rsfUS multi-slice measurements in the brain-wide area. The results showed that rsfUS with the short duration succeeded in detecting RSNs distributed in the brain-wide area consistent with RSNs detected by 11.7-T MRI under awake conditions (medial prefrontal cortex and cingulate cortex in the anterior DMN, retrosplenial cortex and visual cortex in the posterior DMN, somatosensory and motor cortexes in the lateral cortical network, thalamus, dorsal hippocampus, and medial cerebellum), confirming the reliability of the RSNs detected by rsfUS. However, bilateral RSNs located in the secondary somatosensory cortex, ventral hippocampus, auditory cortex, and lateral cerebellum extracted from rsfUS were different from the unilateral RSNs extracted from rsfMRI. These findings indicate the potential of rsfUS as a method for analyzing functional brain networks and should encourage future research to elucidate functional brain networks and their relationships with disease model mice." @default.
- W4385283176 created "2023-07-27" @default.
- W4385283176 creator A5020341234 @default.
- W4385283176 creator A5022941156 @default.
- W4385283176 creator A5025592956 @default.
- W4385283176 creator A5027756487 @default.
- W4385283176 creator A5045263985 @default.
- W4385283176 creator A5075191346 @default.
- W4385283176 date "2023-10-01" @default.
- W4385283176 modified "2023-10-16" @default.
- W4385283176 title "Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound" @default.
- W4385283176 cites W1144597879 @default.
- W4385283176 cites W1596614913 @default.
- W4385283176 cites W1760829075 @default.
- W4385283176 cites W1964726460 @default.
- W4385283176 cites W1968000267 @default.
- W4385283176 cites W1976114527 @default.
- W4385283176 cites W1976642492 @default.
- W4385283176 cites W1979600308 @default.
- W4385283176 cites W1985327120 @default.
- W4385283176 cites W2002923643 @default.
- W4385283176 cites W2008607322 @default.
- W4385283176 cites W2009494091 @default.
- W4385283176 cites W2010807412 @default.
- W4385283176 cites W2011913628 @default.
- W4385283176 cites W2044487274 @default.
- W4385283176 cites W2052880826 @default.
- W4385283176 cites W2056081184 @default.
- W4385283176 cites W2056465968 @default.
- W4385283176 cites W2063294564 @default.
- W4385283176 cites W2071714163 @default.
- W4385283176 cites W2074672445 @default.
- W4385283176 cites W2076683771 @default.
- W4385283176 cites W2095438393 @default.
- W4385283176 cites W2097982135 @default.
- W4385283176 cites W2099165579 @default.
- W4385283176 cites W2107301202 @default.
- W4385283176 cites W2114809469 @default.
- W4385283176 cites W2120546516 @default.
- W4385283176 cites W2126481749 @default.
- W4385283176 cites W2130671706 @default.
- W4385283176 cites W2132518315 @default.
- W4385283176 cites W2133903921 @default.
- W4385283176 cites W2134596475 @default.
- W4385283176 cites W2134799478 @default.
- W4385283176 cites W2136145485 @default.
- W4385283176 cites W2137526583 @default.
- W4385283176 cites W2139447054 @default.
- W4385283176 cites W2143285014 @default.
- W4385283176 cites W2154415862 @default.
- W4385283176 cites W2165311219 @default.
- W4385283176 cites W2174473997 @default.
- W4385283176 cites W2471267159 @default.
- W4385283176 cites W2528889408 @default.
- W4385283176 cites W2594878999 @default.
- W4385283176 cites W2734811923 @default.
- W4385283176 cites W2740144357 @default.
- W4385283176 cites W2895573692 @default.
- W4385283176 cites W2922358010 @default.
- W4385283176 cites W2963020316 @default.
- W4385283176 cites W2973486294 @default.
- W4385283176 cites W3005483064 @default.
- W4385283176 cites W3035566303 @default.
- W4385283176 cites W3093424769 @default.
- W4385283176 cites W3112749784 @default.
- W4385283176 cites W3131249221 @default.
- W4385283176 cites W3136129142 @default.
- W4385283176 cites W3136804908 @default.
- W4385283176 cites W3137368506 @default.
- W4385283176 cites W314655020 @default.
- W4385283176 cites W3183611435 @default.
- W4385283176 cites W3189427940 @default.
- W4385283176 cites W4226167020 @default.
- W4385283176 cites W4281718759 @default.
- W4385283176 doi "https://doi.org/10.1016/j.neuroimage.2023.120297" @default.
- W4385283176 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37500027" @default.
- W4385283176 hasPublicationYear "2023" @default.
- W4385283176 type Work @default.
- W4385283176 citedByCount "0" @default.
- W4385283176 crossrefType "journal-article" @default.
- W4385283176 hasAuthorship W4385283176A5020341234 @default.
- W4385283176 hasAuthorship W4385283176A5022941156 @default.
- W4385283176 hasAuthorship W4385283176A5025592956 @default.
- W4385283176 hasAuthorship W4385283176A5027756487 @default.
- W4385283176 hasAuthorship W4385283176A5045263985 @default.
- W4385283176 hasAuthorship W4385283176A5075191346 @default.
- W4385283176 hasBestOaLocation W43852831761 @default.
- W4385283176 hasConcept C120843803 @default.
- W4385283176 hasConcept C138885662 @default.
- W4385283176 hasConcept C141516989 @default.
- W4385283176 hasConcept C153180895 @default.
- W4385283176 hasConcept C154945302 @default.
- W4385283176 hasConcept C15744967 @default.
- W4385283176 hasConcept C16210155 @default.
- W4385283176 hasConcept C169760540 @default.
- W4385283176 hasConcept C182752723 @default.
- W4385283176 hasConcept C2779226451 @default.
- W4385283176 hasConcept C2780238834 @default.