Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385285440> ?p ?o ?g. }
- W4385285440 abstract "Abstract Purpose Application of machine learning in bone metastasis of prostate cancer based on inflammation and nutritional indicators. Methods Retrospective analysis the clinical data of patients with prostate cancer initially diagnosed in the Department of Urology of Gansu Provincial People's Hospital from June 2017 to June 2022. Logistic regression (LR) and least absolute shrinkage and selection operator (LASSO) are used to jointly screened the model features. The filtered features are incorporated into algorithms including LR, random forest (RF), extreme gradient boosting (XGBoost), naive nayes (NB), k-nearest neighbor (KNN), and decision tree (DT), to develop prostate cancer bone metastasis models. Results A total of 404 patients were finally screened. Gleason score, T stage, N stage, PSA and ALP were used as features for modeling. The average AUC of the 5-fold cross-validation for each machine learning model in the training set is: LR (AUC = 0.9054), RF (AUC = 0.9032), NB (AUC = 0.8961), KNN (AUC = 0.8704), DT (AUC = 0.8526), XGBoost (AUC = 0.8066). The AUC of each machine learning model in the test set is KNN (AUC = 0.9390, 95%CI: 0.8760 ~ 1), RF (AUC = 0.9290, 95%CI: 0.8718 ~ 0.9861), NB (AUC = 0.9268, 95%CI: 0.8615 ~ 0.9920), LR (AUC = 0.9212, 95%CI: 0.8506 ~ 0.9917), XGBoost (AUC = 0.8292, 95%CI: 0.7442 ~ 0.9141), DT (AUC = 0.8057, 95%CI: 0.7100 ~ 0.9014). A comprehensive evaluation of the DeLong test among different models and each evaluation metric shows that KNN is the best machine learning model in the study. Conclusion A bone metastasis model of prostate cancer was established, and it was observed that indicators such as inflammation and nutrition had a weak correlation with bone metastasis." @default.
- W4385285440 created "2023-07-27" @default.
- W4385285440 creator A5045470759 @default.
- W4385285440 creator A5054711300 @default.
- W4385285440 creator A5055838753 @default.
- W4385285440 creator A5081223473 @default.
- W4385285440 creator A5091562004 @default.
- W4385285440 date "2023-07-26" @default.
- W4385285440 modified "2023-09-27" @default.
- W4385285440 title "Development and validation of a machine learning model for bone metastasis in prostate cancer: Based on inflammatory and nutritional indicators" @default.
- W4385285440 cites W1975577875 @default.
- W4385285440 cites W2064186732 @default.
- W4385285440 cites W2070958949 @default.
- W4385285440 cites W2118278569 @default.
- W4385285440 cites W2143841612 @default.
- W4385285440 cites W2155397451 @default.
- W4385285440 cites W2177870565 @default.
- W4385285440 cites W2315517212 @default.
- W4385285440 cites W2786753426 @default.
- W4385285440 cites W2807085990 @default.
- W4385285440 cites W2889829205 @default.
- W4385285440 cites W2912904861 @default.
- W4385285440 cites W2923394609 @default.
- W4385285440 cites W2953438501 @default.
- W4385285440 cites W2956024695 @default.
- W4385285440 cites W2982970399 @default.
- W4385285440 cites W2990125601 @default.
- W4385285440 cites W2998322952 @default.
- W4385285440 cites W3009207988 @default.
- W4385285440 cites W3012023346 @default.
- W4385285440 cites W3012578600 @default.
- W4385285440 cites W3021602304 @default.
- W4385285440 cites W3068772833 @default.
- W4385285440 cites W3106806530 @default.
- W4385285440 cites W3108856110 @default.
- W4385285440 cites W3128646645 @default.
- W4385285440 cites W3154803627 @default.
- W4385285440 cites W3157396935 @default.
- W4385285440 cites W3165810787 @default.
- W4385285440 cites W3204312334 @default.
- W4385285440 cites W3217512222 @default.
- W4385285440 cites W4205236124 @default.
- W4385285440 cites W4206939854 @default.
- W4385285440 cites W4214669832 @default.
- W4385285440 cites W4220663538 @default.
- W4385285440 cites W4306835945 @default.
- W4385285440 cites W4310452363 @default.
- W4385285440 cites W4310963319 @default.
- W4385285440 cites W4311554357 @default.
- W4385285440 cites W4313543896 @default.
- W4385285440 cites W4315754639 @default.
- W4385285440 cites W4322761313 @default.
- W4385285440 doi "https://doi.org/10.21203/rs.3.rs-3193655/v1" @default.
- W4385285440 hasPublicationYear "2023" @default.
- W4385285440 type Work @default.
- W4385285440 citedByCount "0" @default.
- W4385285440 crossrefType "posted-content" @default.
- W4385285440 hasAuthorship W4385285440A5045470759 @default.
- W4385285440 hasAuthorship W4385285440A5054711300 @default.
- W4385285440 hasAuthorship W4385285440A5055838753 @default.
- W4385285440 hasAuthorship W4385285440A5081223473 @default.
- W4385285440 hasAuthorship W4385285440A5091562004 @default.
- W4385285440 hasConcept C119857082 @default.
- W4385285440 hasConcept C121608353 @default.
- W4385285440 hasConcept C126322002 @default.
- W4385285440 hasConcept C136764020 @default.
- W4385285440 hasConcept C143998085 @default.
- W4385285440 hasConcept C151956035 @default.
- W4385285440 hasConcept C154945302 @default.
- W4385285440 hasConcept C169258074 @default.
- W4385285440 hasConcept C169903167 @default.
- W4385285440 hasConcept C2777783956 @default.
- W4385285440 hasConcept C2780192828 @default.
- W4385285440 hasConcept C37616216 @default.
- W4385285440 hasConcept C41008148 @default.
- W4385285440 hasConcept C58471807 @default.
- W4385285440 hasConcept C70153297 @default.
- W4385285440 hasConcept C71924100 @default.
- W4385285440 hasConcept C76318530 @default.
- W4385285440 hasConceptScore W4385285440C119857082 @default.
- W4385285440 hasConceptScore W4385285440C121608353 @default.
- W4385285440 hasConceptScore W4385285440C126322002 @default.
- W4385285440 hasConceptScore W4385285440C136764020 @default.
- W4385285440 hasConceptScore W4385285440C143998085 @default.
- W4385285440 hasConceptScore W4385285440C151956035 @default.
- W4385285440 hasConceptScore W4385285440C154945302 @default.
- W4385285440 hasConceptScore W4385285440C169258074 @default.
- W4385285440 hasConceptScore W4385285440C169903167 @default.
- W4385285440 hasConceptScore W4385285440C2777783956 @default.
- W4385285440 hasConceptScore W4385285440C2780192828 @default.
- W4385285440 hasConceptScore W4385285440C37616216 @default.
- W4385285440 hasConceptScore W4385285440C41008148 @default.
- W4385285440 hasConceptScore W4385285440C58471807 @default.
- W4385285440 hasConceptScore W4385285440C70153297 @default.
- W4385285440 hasConceptScore W4385285440C71924100 @default.
- W4385285440 hasConceptScore W4385285440C76318530 @default.
- W4385285440 hasLocation W43852854401 @default.
- W4385285440 hasOpenAccess W4385285440 @default.
- W4385285440 hasPrimaryLocation W43852854401 @default.
- W4385285440 hasRelatedWork W2605253636 @default.