Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385291723> ?p ?o ?g. }
- W4385291723 abstract "Context. The availability of large bandwidth receivers for millimeter radio telescopes allows the acquisition of position-position-frequency data cubes over a wide field of view and a broad frequency coverage. These cubes contain much information on the physical, chemical, and kinematical properties of the emitting gas. However, their large size coupled with inhomogenous signal-to-noise ratio (SNR) are major challenges for consistent analysis and interpretation.Aims. We search for a denoising method of the low SNR regions of the studied data cubes that would allow to recover the low SNR emission without distorting the signals with high SNR.Methods. We perform an in-depth data analysis of the 13 CO and C 17 O (1 -- 0) data cubes obtained as part of the ORION-B large program performed at the IRAM 30m telescope. We analyse the statistical properties of the noise and the evolution of the correlation of the signal in a given frequency channel with that of the adjacent channels. This allows us to propose significant improvements of typical autoassociative neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the 13 CO (1 -- 0) cube, we compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA, considered as the state of the art procedure for data line cubes.Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth remote sensing literature because the observed intensities become statistically independent beyond a short channel separation. This lack of redundancy in data has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral axis. The application of the proposed algorithm leads to an increase of the SNR in voxels with weak signal, while preserving the spectral shape of the data in high SNR voxels.Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder architecture is a promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial correlations of the noise may further improve the denoising performances seems a promising avenue. In addition," @default.
- W4385291723 created "2023-07-27" @default.
- W4385291723 creator A5007007631 @default.
- W4385291723 creator A5008102443 @default.
- W4385291723 creator A5014514268 @default.
- W4385291723 creator A5015636843 @default.
- W4385291723 creator A5018324173 @default.
- W4385291723 creator A5022048099 @default.
- W4385291723 creator A5026932467 @default.
- W4385291723 creator A5029764095 @default.
- W4385291723 creator A5035508615 @default.
- W4385291723 creator A5035603107 @default.
- W4385291723 creator A5036135230 @default.
- W4385291723 creator A5041571952 @default.
- W4385291723 creator A5043310837 @default.
- W4385291723 creator A5044042122 @default.
- W4385291723 creator A5045914225 @default.
- W4385291723 creator A5046331422 @default.
- W4385291723 creator A5046451348 @default.
- W4385291723 creator A5047622950 @default.
- W4385291723 creator A5049169526 @default.
- W4385291723 creator A5049235490 @default.
- W4385291723 creator A5052141230 @default.
- W4385291723 creator A5056328190 @default.
- W4385291723 creator A5058783429 @default.
- W4385291723 creator A5061440884 @default.
- W4385291723 creator A5066574807 @default.
- W4385291723 creator A5072850029 @default.
- W4385291723 creator A5076171671 @default.
- W4385291723 creator A5078577547 @default.
- W4385291723 creator A5080475914 @default.
- W4385291723 creator A5081780906 @default.
- W4385291723 creator A5088402344 @default.
- W4385291723 creator A5089556614 @default.
- W4385291723 date "2023-09-21" @default.
- W4385291723 modified "2023-10-12" @default.
- W4385291723 title "Deep learning denoising by dimension reduction: Application to the ORION-B line cubes" @default.
- W4385291723 doi "https://doi.org/10.1051/0004-6361/202346064" @default.
- W4385291723 hasPublicationYear "2023" @default.
- W4385291723 type Work @default.
- W4385291723 citedByCount "0" @default.
- W4385291723 crossrefType "journal-article" @default.
- W4385291723 hasAuthorship W4385291723A5007007631 @default.
- W4385291723 hasAuthorship W4385291723A5008102443 @default.
- W4385291723 hasAuthorship W4385291723A5014514268 @default.
- W4385291723 hasAuthorship W4385291723A5015636843 @default.
- W4385291723 hasAuthorship W4385291723A5018324173 @default.
- W4385291723 hasAuthorship W4385291723A5022048099 @default.
- W4385291723 hasAuthorship W4385291723A5026932467 @default.
- W4385291723 hasAuthorship W4385291723A5029764095 @default.
- W4385291723 hasAuthorship W4385291723A5035508615 @default.
- W4385291723 hasAuthorship W4385291723A5035603107 @default.
- W4385291723 hasAuthorship W4385291723A5036135230 @default.
- W4385291723 hasAuthorship W4385291723A5041571952 @default.
- W4385291723 hasAuthorship W4385291723A5043310837 @default.
- W4385291723 hasAuthorship W4385291723A5044042122 @default.
- W4385291723 hasAuthorship W4385291723A5045914225 @default.
- W4385291723 hasAuthorship W4385291723A5046331422 @default.
- W4385291723 hasAuthorship W4385291723A5046451348 @default.
- W4385291723 hasAuthorship W4385291723A5047622950 @default.
- W4385291723 hasAuthorship W4385291723A5049169526 @default.
- W4385291723 hasAuthorship W4385291723A5049235490 @default.
- W4385291723 hasAuthorship W4385291723A5052141230 @default.
- W4385291723 hasAuthorship W4385291723A5056328190 @default.
- W4385291723 hasAuthorship W4385291723A5058783429 @default.
- W4385291723 hasAuthorship W4385291723A5061440884 @default.
- W4385291723 hasAuthorship W4385291723A5066574807 @default.
- W4385291723 hasAuthorship W4385291723A5072850029 @default.
- W4385291723 hasAuthorship W4385291723A5076171671 @default.
- W4385291723 hasAuthorship W4385291723A5078577547 @default.
- W4385291723 hasAuthorship W4385291723A5080475914 @default.
- W4385291723 hasAuthorship W4385291723A5081780906 @default.
- W4385291723 hasAuthorship W4385291723A5088402344 @default.
- W4385291723 hasAuthorship W4385291723A5089556614 @default.
- W4385291723 hasBestOaLocation W43852917231 @default.
- W4385291723 hasConcept C10138342 @default.
- W4385291723 hasConcept C11413529 @default.
- W4385291723 hasConcept C115961682 @default.
- W4385291723 hasConcept C124101348 @default.
- W4385291723 hasConcept C127162648 @default.
- W4385291723 hasConcept C127313418 @default.
- W4385291723 hasConcept C151730666 @default.
- W4385291723 hasConcept C153180895 @default.
- W4385291723 hasConcept C153914771 @default.
- W4385291723 hasConcept C154945302 @default.
- W4385291723 hasConcept C159078339 @default.
- W4385291723 hasConcept C162324750 @default.
- W4385291723 hasConcept C163294075 @default.
- W4385291723 hasConcept C198082294 @default.
- W4385291723 hasConcept C2776257435 @default.
- W4385291723 hasConcept C2779343474 @default.
- W4385291723 hasConcept C41008148 @default.
- W4385291723 hasConcept C62649853 @default.
- W4385291723 hasConcept C76155785 @default.
- W4385291723 hasConcept C78168278 @default.
- W4385291723 hasConcept C99498987 @default.
- W4385291723 hasConceptScore W4385291723C10138342 @default.
- W4385291723 hasConceptScore W4385291723C11413529 @default.
- W4385291723 hasConceptScore W4385291723C115961682 @default.
- W4385291723 hasConceptScore W4385291723C124101348 @default.