Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385297002> ?p ?o ?g. }
- W4385297002 endingPage "128569" @default.
- W4385297002 startingPage "128569" @default.
- W4385297002 abstract "Accurate load forecasting is essential for power system stability and grid dispatch optimization. However, this task is challenging due to the inherent instability and volatility of the load sequence. To address this problem, this paper proposes a novel load forecasting model that integrates periodicity detection, the variable t-distribution, and the dual attention mechanism. Periodicity detection has been incorporated into the self-attention mechanism for the first time, identifying the most significant period in the raw load sequence. Subsequently, the raw load sequence undergoes processing using empirical wavelet transform, resulting in a series of subsequences. A feature attention mechanism is then employed to extract relevant input features. Furthermore, a novel variable t-distribution distance matrix is introduced into the temporal self-attention mechanism, enhancing the influence of data at identical or nearby positions in other periods based on the length of the most significant period. This modification improves the capacity of the vanilla self-attention mechanism to effectively model the relationship between data at varying distances. The hyperparameters of the variable t-distribution are obtained through Bayesian hyperparameter optimization. Empirical evaluations on two datasets with distinct meteorological and load features show that the proposed model outperforms baseline models across all metrics. © 2017 Elsevier Inc. All rights reserved." @default.
- W4385297002 created "2023-07-28" @default.
- W4385297002 creator A5002316661 @default.
- W4385297002 creator A5003067127 @default.
- W4385297002 creator A5008265597 @default.
- W4385297002 creator A5012309357 @default.
- W4385297002 creator A5036666128 @default.
- W4385297002 date "2023-11-01" @default.
- W4385297002 modified "2023-10-16" @default.
- W4385297002 title "Electrical load forecasting based on variable T-distribution and dual attention mechanism" @default.
- W4385297002 cites W1993606324 @default.
- W4385297002 cites W2000982976 @default.
- W4385297002 cites W2019900743 @default.
- W4385297002 cites W2023419040 @default.
- W4385297002 cites W2031104677 @default.
- W4385297002 cites W2039800014 @default.
- W4385297002 cites W2101172034 @default.
- W4385297002 cites W2114723491 @default.
- W4385297002 cites W2120390927 @default.
- W4385297002 cites W2126777570 @default.
- W4385297002 cites W2161297450 @default.
- W4385297002 cites W2197620369 @default.
- W4385297002 cites W2299617127 @default.
- W4385297002 cites W2597866042 @default.
- W4385297002 cites W2740570963 @default.
- W4385297002 cites W2754252319 @default.
- W4385297002 cites W2764791077 @default.
- W4385297002 cites W2890096158 @default.
- W4385297002 cites W2899494475 @default.
- W4385297002 cites W2899885090 @default.
- W4385297002 cites W2905016804 @default.
- W4385297002 cites W2945236236 @default.
- W4385297002 cites W2983199727 @default.
- W4385297002 cites W2989940830 @default.
- W4385297002 cites W3004665554 @default.
- W4385297002 cites W3005962597 @default.
- W4385297002 cites W3023201705 @default.
- W4385297002 cites W3024608174 @default.
- W4385297002 cites W3088383850 @default.
- W4385297002 cites W3097546265 @default.
- W4385297002 cites W3133181227 @default.
- W4385297002 cites W3135351349 @default.
- W4385297002 cites W3146366485 @default.
- W4385297002 cites W3157294059 @default.
- W4385297002 cites W3164894090 @default.
- W4385297002 cites W3194960351 @default.
- W4385297002 cites W3195840469 @default.
- W4385297002 cites W4200099800 @default.
- W4385297002 cites W4210601439 @default.
- W4385297002 cites W4210763500 @default.
- W4385297002 cites W4224275571 @default.
- W4385297002 cites W4229443704 @default.
- W4385297002 cites W4281611763 @default.
- W4385297002 cites W4281877431 @default.
- W4385297002 cites W4285595479 @default.
- W4385297002 cites W4289528755 @default.
- W4385297002 cites W4293148730 @default.
- W4385297002 cites W4309676689 @default.
- W4385297002 cites W4312071355 @default.
- W4385297002 cites W4313010312 @default.
- W4385297002 cites W4323838614 @default.
- W4385297002 cites W4327714588 @default.
- W4385297002 cites W4362668568 @default.
- W4385297002 cites W977807926 @default.
- W4385297002 doi "https://doi.org/10.1016/j.energy.2023.128569" @default.
- W4385297002 hasPublicationYear "2023" @default.
- W4385297002 type Work @default.
- W4385297002 citedByCount "0" @default.
- W4385297002 crossrefType "journal-article" @default.
- W4385297002 hasAuthorship W4385297002A5002316661 @default.
- W4385297002 hasAuthorship W4385297002A5003067127 @default.
- W4385297002 hasAuthorship W4385297002A5008265597 @default.
- W4385297002 hasAuthorship W4385297002A5012309357 @default.
- W4385297002 hasAuthorship W4385297002A5036666128 @default.
- W4385297002 hasConcept C10485038 @default.
- W4385297002 hasConcept C107673813 @default.
- W4385297002 hasConcept C112972136 @default.
- W4385297002 hasConcept C119857082 @default.
- W4385297002 hasConcept C12267149 @default.
- W4385297002 hasConcept C124952713 @default.
- W4385297002 hasConcept C126255220 @default.
- W4385297002 hasConcept C134306372 @default.
- W4385297002 hasConcept C142362112 @default.
- W4385297002 hasConcept C149782125 @default.
- W4385297002 hasConcept C153180895 @default.
- W4385297002 hasConcept C154945302 @default.
- W4385297002 hasConcept C182365436 @default.
- W4385297002 hasConcept C2778112365 @default.
- W4385297002 hasConcept C2780980858 @default.
- W4385297002 hasConcept C33923547 @default.
- W4385297002 hasConcept C41008148 @default.
- W4385297002 hasConcept C54355233 @default.
- W4385297002 hasConcept C8642999 @default.
- W4385297002 hasConcept C86803240 @default.
- W4385297002 hasConcept C91602232 @default.
- W4385297002 hasConceptScore W4385297002C10485038 @default.
- W4385297002 hasConceptScore W4385297002C107673813 @default.
- W4385297002 hasConceptScore W4385297002C112972136 @default.