Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385299462> ?p ?o ?g. }
- W4385299462 endingPage "80055" @default.
- W4385299462 startingPage "80030" @default.
- W4385299462 abstract "Non-communicable disease, especially chronic disease, is the most common factor of complication of deteriorating physical health and the state of one’s mind. It is also a prominent cause of illness and mortality around the world. Primarily chronic disease is preventable at a particular stage though its occurrence is critical. To make clinical decisions, these illness prediction models were created to assist clinicians and patients. A chronic disease prediction model takes into account many risk variables to determine an individual’s illness risk. Machine learning approaches have made it possible to predict chronic disease early by collecting Electronic Health Record (EHR) data. This paper focuses on the diabetes dataset extracted from Kaggle and two unseen real datasets. In this paper, we have implemented Synthetic Minority Over-Sampling Technique (SMOTE) algorithm to balance the dataset. We have also explored Boruta as the feature selection method. To tune hyper-parameters of different algorithms, we have proposed an improved technique by combining the Grid Search method with the Grey Wolf Optimization algorithm. The Grid Search method requires extensive searching, while the Grey Wolf Optimization algorithm is easily linked, rapid to seek, and extremely exact. Nine conventional classification techniques have been evaluated in this paper. This research concentrates on the Stacking Classifier to assess the performance of the prediction model that produces the best results. The Proposed Model gave the highest F1-Score 98.84% on PIMA dataset, 98% after validation on the Synthetic dataset, 97.3% on ADRC dataset, 96.20% on FHD dataset. To the best of our knowledge, no previous work has focused on such a sort of technique and these two datasets. The outcomes of the comparison experiment on the PIMA dataset reveals that the proposed strategy performs better. This study also provides the interpretation of the proposed model. It conducts an ethical assessment of what explainability means for the use of Machine Learning models in clinical practice." @default.
- W4385299462 created "2023-07-28" @default.
- W4385299462 creator A5036691349 @default.
- W4385299462 creator A5043059995 @default.
- W4385299462 creator A5083628749 @default.
- W4385299462 creator A5086840695 @default.
- W4385299462 date "2023-01-01" @default.
- W4385299462 modified "2023-09-26" @default.
- W4385299462 title "Exploring Hyper-Parameters and Feature Selection for Predicting Non-Communicable Chronic Disease Using Stacking Classifier" @default.
- W4385299462 cites W2061438946 @default.
- W4385299462 cites W2107435951 @default.
- W4385299462 cites W2126623642 @default.
- W4385299462 cites W2156665896 @default.
- W4385299462 cites W2518045411 @default.
- W4385299462 cites W2593330790 @default.
- W4385299462 cites W2610135452 @default.
- W4385299462 cites W2622382573 @default.
- W4385299462 cites W2748022024 @default.
- W4385299462 cites W2795475639 @default.
- W4385299462 cites W28412257 @default.
- W4385299462 cites W2921196390 @default.
- W4385299462 cites W2933013505 @default.
- W4385299462 cites W2937554593 @default.
- W4385299462 cites W2942796683 @default.
- W4385299462 cites W2945048168 @default.
- W4385299462 cites W2946812942 @default.
- W4385299462 cites W2963989903 @default.
- W4385299462 cites W2970487695 @default.
- W4385299462 cites W2973538535 @default.
- W4385299462 cites W2990291356 @default.
- W4385299462 cites W2997606798 @default.
- W4385299462 cites W2997982564 @default.
- W4385299462 cites W3007461849 @default.
- W4385299462 cites W3012816465 @default.
- W4385299462 cites W3014690256 @default.
- W4385299462 cites W3020776760 @default.
- W4385299462 cites W3034654929 @default.
- W4385299462 cites W3046918297 @default.
- W4385299462 cites W3103102495 @default.
- W4385299462 cites W3109650690 @default.
- W4385299462 cites W3110281866 @default.
- W4385299462 cites W3125584267 @default.
- W4385299462 cites W3132354867 @default.
- W4385299462 cites W3137532457 @default.
- W4385299462 cites W3169687406 @default.
- W4385299462 cites W3172921504 @default.
- W4385299462 cites W3173818966 @default.
- W4385299462 cites W3194175849 @default.
- W4385299462 cites W3201551779 @default.
- W4385299462 cites W3211368727 @default.
- W4385299462 cites W3217322746 @default.
- W4385299462 cites W4200263281 @default.
- W4385299462 cites W4205625755 @default.
- W4385299462 cites W4214939615 @default.
- W4385299462 cites W4220940482 @default.
- W4385299462 cites W4221125739 @default.
- W4385299462 cites W4223656261 @default.
- W4385299462 cites W4223893747 @default.
- W4385299462 cites W4223994276 @default.
- W4385299462 cites W4225540162 @default.
- W4385299462 cites W4229448199 @default.
- W4385299462 cites W4230269340 @default.
- W4385299462 cites W4280639694 @default.
- W4385299462 cites W4281252268 @default.
- W4385299462 cites W4281754202 @default.
- W4385299462 cites W4283262736 @default.
- W4385299462 cites W4283719804 @default.
- W4385299462 cites W4293192647 @default.
- W4385299462 cites W4293224815 @default.
- W4385299462 cites W4293771242 @default.
- W4385299462 cites W4294559022 @default.
- W4385299462 cites W4295838423 @default.
- W4385299462 cites W4301180893 @default.
- W4385299462 cites W4303709772 @default.
- W4385299462 cites W4307266359 @default.
- W4385299462 cites W4307703018 @default.
- W4385299462 cites W4312093812 @default.
- W4385299462 cites W4313038549 @default.
- W4385299462 cites W4313644512 @default.
- W4385299462 doi "https://doi.org/10.1109/access.2023.3299332" @default.
- W4385299462 hasPublicationYear "2023" @default.
- W4385299462 type Work @default.
- W4385299462 citedByCount "0" @default.
- W4385299462 crossrefType "journal-article" @default.
- W4385299462 hasAuthorship W4385299462A5036691349 @default.
- W4385299462 hasAuthorship W4385299462A5043059995 @default.
- W4385299462 hasAuthorship W4385299462A5083628749 @default.
- W4385299462 hasAuthorship W4385299462A5086840695 @default.
- W4385299462 hasBestOaLocation W43852994621 @default.
- W4385299462 hasConcept C10485038 @default.
- W4385299462 hasConcept C119857082 @default.
- W4385299462 hasConcept C12267149 @default.
- W4385299462 hasConcept C124101348 @default.
- W4385299462 hasConcept C142724271 @default.
- W4385299462 hasConcept C148483581 @default.
- W4385299462 hasConcept C154945302 @default.
- W4385299462 hasConcept C2776577793 @default.
- W4385299462 hasConcept C2779134260 @default.