Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385300723> ?p ?o ?g. }
- W4385300723 endingPage "106360" @default.
- W4385300723 startingPage "106360" @default.
- W4385300723 abstract "The urgent mission for carbon peak and carbon neutrality is demanding greater industrial sustainability. Energy-efficient hybrid flow shop scheduling problem (EEHFSP) has been raising increasing attention in recent years. This paper studies a new EEHFSP with uniform machines to minimize total tardiness, total energy cost, and carbon trading cost. Time-of-use tariffs and power down strategies are simultaneously adopted. A novel multi-objective mixed-integer nonlinear programming model for the problem is proposed. To solve the model, we propose a Q-learning and general variable neighborhood search (GVNS) driven non-dominated sorting genetic algorithm II (QVNS-NSGA-II). The novelty of the algorithm is that we incorporate Q-learning into GVNS to guide premium adaptive operator selection throughout the shaking and local search processes. A distinguishing feature is that the states and actions of Q-learning are set as neighborhood structures and local search operators. The Q-learning-driven GVNS is embedded into NSGA-II to promote the exploration and exploitation capability. Experimental results show that the proposed QVNS-NSGA-II outperforms NSGA-II, improved Jaya, and modified MOEA/D in terms of the quantity, quality of Pareto solutions, and computational efficiency. Sensitivity analysis also derives several managerial implications. The proposed approach can be applied to improve sustainability and productivity for hybrid flow shop manufacturers." @default.
- W4385300723 created "2023-07-28" @default.
- W4385300723 creator A5001600401 @default.
- W4385300723 creator A5007000474 @default.
- W4385300723 creator A5008608976 @default.
- W4385300723 creator A5014441532 @default.
- W4385300723 creator A5040339174 @default.
- W4385300723 date "2023-11-01" @default.
- W4385300723 modified "2023-10-17" @default.
- W4385300723 title "Muti-objective energy-efficient hybrid flow shop scheduling using Q-learning and GVNS driven NSGA-II" @default.
- W4385300723 cites W1416338368 @default.
- W4385300723 cites W1964216218 @default.
- W4385300723 cites W1978633301 @default.
- W4385300723 cites W1982360953 @default.
- W4385300723 cites W1986254541 @default.
- W4385300723 cites W2001612470 @default.
- W4385300723 cites W2006751452 @default.
- W4385300723 cites W2010334716 @default.
- W4385300723 cites W2010643995 @default.
- W4385300723 cites W2022369810 @default.
- W4385300723 cites W2046283054 @default.
- W4385300723 cites W2066555597 @default.
- W4385300723 cites W2069657950 @default.
- W4385300723 cites W2075167823 @default.
- W4385300723 cites W2079661120 @default.
- W4385300723 cites W2083457599 @default.
- W4385300723 cites W2084576452 @default.
- W4385300723 cites W2088303535 @default.
- W4385300723 cites W2090069860 @default.
- W4385300723 cites W2125827607 @default.
- W4385300723 cites W2126105956 @default.
- W4385300723 cites W2139242502 @default.
- W4385300723 cites W2157846217 @default.
- W4385300723 cites W2462800345 @default.
- W4385300723 cites W2731571249 @default.
- W4385300723 cites W2743994469 @default.
- W4385300723 cites W2747755509 @default.
- W4385300723 cites W2755052565 @default.
- W4385300723 cites W2809645976 @default.
- W4385300723 cites W2884984207 @default.
- W4385300723 cites W2886663814 @default.
- W4385300723 cites W2948098966 @default.
- W4385300723 cites W2963295276 @default.
- W4385300723 cites W2972396893 @default.
- W4385300723 cites W2973123735 @default.
- W4385300723 cites W3005336337 @default.
- W4385300723 cites W3037878688 @default.
- W4385300723 cites W3047863327 @default.
- W4385300723 cites W3080506421 @default.
- W4385300723 cites W3082377584 @default.
- W4385300723 cites W3083347893 @default.
- W4385300723 cites W3093620985 @default.
- W4385300723 cites W3096956956 @default.
- W4385300723 cites W3117957642 @default.
- W4385300723 cites W3128296503 @default.
- W4385300723 cites W3159134414 @default.
- W4385300723 cites W3178594337 @default.
- W4385300723 cites W3201030679 @default.
- W4385300723 cites W3203930809 @default.
- W4385300723 cites W3208964875 @default.
- W4385300723 cites W4206659682 @default.
- W4385300723 cites W4220976805 @default.
- W4385300723 cites W4221035225 @default.
- W4385300723 cites W4223925332 @default.
- W4385300723 cites W4226164141 @default.
- W4385300723 cites W4280537970 @default.
- W4385300723 cites W4281720841 @default.
- W4385300723 cites W4293692341 @default.
- W4385300723 cites W4306928238 @default.
- W4385300723 cites W4308499906 @default.
- W4385300723 cites W4309879851 @default.
- W4385300723 cites W4313529556 @default.
- W4385300723 cites W4321381430 @default.
- W4385300723 cites W4321382063 @default.
- W4385300723 cites W826685547 @default.
- W4385300723 cites W867003385 @default.
- W4385300723 doi "https://doi.org/10.1016/j.cor.2023.106360" @default.
- W4385300723 hasPublicationYear "2023" @default.
- W4385300723 type Work @default.
- W4385300723 citedByCount "1" @default.
- W4385300723 crossrefType "journal-article" @default.
- W4385300723 hasAuthorship W4385300723A5001600401 @default.
- W4385300723 hasAuthorship W4385300723A5007000474 @default.
- W4385300723 hasAuthorship W4385300723A5008608976 @default.
- W4385300723 hasAuthorship W4385300723A5014441532 @default.
- W4385300723 hasAuthorship W4385300723A5040339174 @default.
- W4385300723 hasConcept C111696304 @default.
- W4385300723 hasConcept C111919701 @default.
- W4385300723 hasConcept C11413529 @default.
- W4385300723 hasConcept C123370116 @default.
- W4385300723 hasConcept C126255220 @default.
- W4385300723 hasConcept C135320971 @default.
- W4385300723 hasConcept C18903297 @default.
- W4385300723 hasConcept C2778047078 @default.
- W4385300723 hasConcept C2780936489 @default.
- W4385300723 hasConcept C33923547 @default.
- W4385300723 hasConcept C41008148 @default.
- W4385300723 hasConcept C47737302 @default.