Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385300768> ?p ?o ?g. }
- W4385300768 endingPage "15" @default.
- W4385300768 startingPage "1" @default.
- W4385300768 abstract "Seismic fault interpretation is of extraordinary significant for hydrocarbon reservoir characterization and drilling hazard mitigation. In recent years, deep learning-based seismic fault detection methods have been conducted actively. Considering efficiency and fault prediction consistency, the most appealing way is to train a 3D segmentation network using synthetic seismic data with ground truth fault structure. However, the differences in signal-to-noise ratio, resolution, and fault strike distribution between synthetic and real data, can lead to inconsistent and unreliable prediction results. In this paper, we propose a multi-task deep learning-based seismic fault detection method, which takes seismic fault detection as the main task and 3D seismic data reconstruction as the auxiliary task, named MTL-FaultNet. The auxiliary branch can provide suggestive information to the main branch thereby improving its performance. We also designed two levels of multi-scale modules and embedded attention mechanisms in the network, so as to improve the network’s ability to focus on multi-scale fault features and learn stable fault structures. Different weights are assigned to the loss for different tasks, with large and small weights on the main and the auxiliary branch respectively. We apply the proposed method to Netherlands offshore F3 seismic data and a land field seismic data collected from Tarim Basin with mainly strike-slip faults, and Poseidon 3D seismic data. The proposed fault detection method is experimentally demonstrated on the improved network generalization and achieves reliable fault interpretation on field seismic data." @default.
- W4385300768 created "2023-07-28" @default.
- W4385300768 creator A5003022700 @default.
- W4385300768 creator A5005327204 @default.
- W4385300768 creator A5019412099 @default.
- W4385300768 creator A5030178470 @default.
- W4385300768 creator A5055822249 @default.
- W4385300768 creator A5083627690 @default.
- W4385300768 date "2023-01-01" @default.
- W4385300768 modified "2023-10-18" @default.
- W4385300768 title "MTL-FaultNet: Seismic Data Reconstruction Assisted Multitask Deep Learning 3-D Fault Interpretation" @default.
- W4385300768 cites W2014758788 @default.
- W4385300768 cites W2029081900 @default.
- W4385300768 cites W2063660399 @default.
- W4385300768 cites W2067678103 @default.
- W4385300768 cites W2068840375 @default.
- W4385300768 cites W2082171961 @default.
- W4385300768 cites W2097117768 @default.
- W4385300768 cites W2106921281 @default.
- W4385300768 cites W2116360511 @default.
- W4385300768 cites W2116369243 @default.
- W4385300768 cites W2125362802 @default.
- W4385300768 cites W2126097500 @default.
- W4385300768 cites W2152225778 @default.
- W4385300768 cites W2194775991 @default.
- W4385300768 cites W2592421213 @default.
- W4385300768 cites W2790352849 @default.
- W4385300768 cites W2805155846 @default.
- W4385300768 cites W2806837086 @default.
- W4385300768 cites W2808760859 @default.
- W4385300768 cites W2887057695 @default.
- W4385300768 cites W2889638205 @default.
- W4385300768 cites W2903815156 @default.
- W4385300768 cites W2911424749 @default.
- W4385300768 cites W2913340405 @default.
- W4385300768 cites W2938394714 @default.
- W4385300768 cites W2962914239 @default.
- W4385300768 cites W2988868065 @default.
- W4385300768 cites W3012353860 @default.
- W4385300768 cites W3091680284 @default.
- W4385300768 cites W3122106221 @default.
- W4385300768 cites W3124259473 @default.
- W4385300768 cites W3133517930 @default.
- W4385300768 cites W3140751667 @default.
- W4385300768 cites W3141431470 @default.
- W4385300768 cites W3142982544 @default.
- W4385300768 cites W3156923668 @default.
- W4385300768 cites W3157386224 @default.
- W4385300768 cites W3180982107 @default.
- W4385300768 cites W3197038694 @default.
- W4385300768 cites W3211037489 @default.
- W4385300768 cites W4221011300 @default.
- W4385300768 cites W4224251314 @default.
- W4385300768 cites W4286906176 @default.
- W4385300768 cites W4291753899 @default.
- W4385300768 cites W4302028744 @default.
- W4385300768 cites W4307348229 @default.
- W4385300768 cites W4320920694 @default.
- W4385300768 doi "https://doi.org/10.1109/tgrs.2023.3299378" @default.
- W4385300768 hasPublicationYear "2023" @default.
- W4385300768 type Work @default.
- W4385300768 citedByCount "1" @default.
- W4385300768 countsByYear W43853007682023 @default.
- W4385300768 crossrefType "journal-article" @default.
- W4385300768 hasAuthorship W4385300768A5003022700 @default.
- W4385300768 hasAuthorship W4385300768A5005327204 @default.
- W4385300768 hasAuthorship W4385300768A5019412099 @default.
- W4385300768 hasAuthorship W4385300768A5030178470 @default.
- W4385300768 hasAuthorship W4385300768A5055822249 @default.
- W4385300768 hasAuthorship W4385300768A5083627690 @default.
- W4385300768 hasConcept C108583219 @default.
- W4385300768 hasConcept C127313418 @default.
- W4385300768 hasConcept C154945302 @default.
- W4385300768 hasConcept C165205528 @default.
- W4385300768 hasConcept C175551986 @default.
- W4385300768 hasConcept C41008148 @default.
- W4385300768 hasConcept C89600930 @default.
- W4385300768 hasConceptScore W4385300768C108583219 @default.
- W4385300768 hasConceptScore W4385300768C127313418 @default.
- W4385300768 hasConceptScore W4385300768C154945302 @default.
- W4385300768 hasConceptScore W4385300768C165205528 @default.
- W4385300768 hasConceptScore W4385300768C175551986 @default.
- W4385300768 hasConceptScore W4385300768C41008148 @default.
- W4385300768 hasConceptScore W4385300768C89600930 @default.
- W4385300768 hasFunder F4320336567 @default.
- W4385300768 hasLocation W43853007681 @default.
- W4385300768 hasOpenAccess W4385300768 @default.
- W4385300768 hasPrimaryLocation W43853007681 @default.
- W4385300768 hasRelatedWork W2167517487 @default.
- W4385300768 hasRelatedWork W2731899572 @default.
- W4385300768 hasRelatedWork W2790662084 @default.
- W4385300768 hasRelatedWork W2954384599 @default.
- W4385300768 hasRelatedWork W2960184797 @default.
- W4385300768 hasRelatedWork W3104734424 @default.
- W4385300768 hasRelatedWork W3113596969 @default.
- W4385300768 hasRelatedWork W3209779739 @default.
- W4385300768 hasRelatedWork W4226289457 @default.
- W4385300768 hasRelatedWork W4285827401 @default.