Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385301858> ?p ?o ?g. }
- W4385301858 endingPage "101147" @default.
- W4385301858 startingPage "101147" @default.
- W4385301858 abstract "Tourism destination image (TDI) in the dark tourism context is considered to be a complex and controversial, yet rarely studied issue in the literature. This study selected three types of dark tourism destinations in China to explore TDI through analyzing user generated photos via DeepSentiBank, a method based on deep convolutional neural networks. Based on a content analysis, this study identified 11 categories of cognitive images, and found that memorial space & sculptures, commemorative symbols, and historical events & place functions were the distinctive categories of cognitive images. Based on a sentiment analysis, it revealed 24 emotions of affective images, and found that negative emotions weighed more heavily than positive emotions in dark tourism destinations. Complex network analysis further revealed multiple inter-linked relationships between cognitive and affective attributes. This study contributes to photo-based sentiment analysis in tourism research, and the findings provide insights for TDI development and management for dark tourism destinations." @default.
- W4385301858 created "2023-07-28" @default.
- W4385301858 creator A5047439878 @default.
- W4385301858 creator A5060347297 @default.
- W4385301858 creator A5083307651 @default.
- W4385301858 creator A5087527017 @default.
- W4385301858 creator A5088698309 @default.
- W4385301858 date "2023-09-01" @default.
- W4385301858 modified "2023-10-17" @default.
- W4385301858 title "Exploring destination image of dark tourism via analyzing user generated photos: A deep learning approach" @default.
- W4385301858 cites W149318437 @default.
- W4385301858 cites W1642844554 @default.
- W4385301858 cites W1835336649 @default.
- W4385301858 cites W1892009507 @default.
- W4385301858 cites W1967958984 @default.
- W4385301858 cites W1968156924 @default.
- W4385301858 cites W1992455534 @default.
- W4385301858 cites W1995925349 @default.
- W4385301858 cites W2001886726 @default.
- W4385301858 cites W2005026078 @default.
- W4385301858 cites W2008620264 @default.
- W4385301858 cites W2014031129 @default.
- W4385301858 cites W2039896733 @default.
- W4385301858 cites W2048761951 @default.
- W4385301858 cites W2053449779 @default.
- W4385301858 cites W2059028452 @default.
- W4385301858 cites W2059734746 @default.
- W4385301858 cites W2060041453 @default.
- W4385301858 cites W2070787446 @default.
- W4385301858 cites W2077233358 @default.
- W4385301858 cites W2085526674 @default.
- W4385301858 cites W2088300322 @default.
- W4385301858 cites W2092721862 @default.
- W4385301858 cites W2097235580 @default.
- W4385301858 cites W2103978234 @default.
- W4385301858 cites W2119124058 @default.
- W4385301858 cites W2125105112 @default.
- W4385301858 cites W2130150515 @default.
- W4385301858 cites W2144178991 @default.
- W4385301858 cites W2164166814 @default.
- W4385301858 cites W2172011332 @default.
- W4385301858 cites W2181331186 @default.
- W4385301858 cites W2269920397 @default.
- W4385301858 cites W2328276201 @default.
- W4385301858 cites W2343276647 @default.
- W4385301858 cites W2416519098 @default.
- W4385301858 cites W2472490454 @default.
- W4385301858 cites W2474195188 @default.
- W4385301858 cites W2507253070 @default.
- W4385301858 cites W2508147613 @default.
- W4385301858 cites W2522660652 @default.
- W4385301858 cites W2542347617 @default.
- W4385301858 cites W2582101214 @default.
- W4385301858 cites W2601924359 @default.
- W4385301858 cites W2609223098 @default.
- W4385301858 cites W2731091424 @default.
- W4385301858 cites W2747886292 @default.
- W4385301858 cites W2762828520 @default.
- W4385301858 cites W2762879863 @default.
- W4385301858 cites W2766647035 @default.
- W4385301858 cites W2789625328 @default.
- W4385301858 cites W2807633451 @default.
- W4385301858 cites W2898383414 @default.
- W4385301858 cites W2905107300 @default.
- W4385301858 cites W2907462218 @default.
- W4385301858 cites W2922405034 @default.
- W4385301858 cites W2947430110 @default.
- W4385301858 cites W2952539590 @default.
- W4385301858 cites W2952613166 @default.
- W4385301858 cites W2956917287 @default.
- W4385301858 cites W3021326911 @default.
- W4385301858 cites W3045695197 @default.
- W4385301858 cites W3082782986 @default.
- W4385301858 cites W3096779382 @default.
- W4385301858 cites W3097659724 @default.
- W4385301858 cites W3110806343 @default.
- W4385301858 cites W3132169218 @default.
- W4385301858 cites W3134208490 @default.
- W4385301858 cites W3165270933 @default.
- W4385301858 cites W3176019123 @default.
- W4385301858 cites W3185610395 @default.
- W4385301858 cites W3187338326 @default.
- W4385301858 cites W3204521979 @default.
- W4385301858 cites W3210074477 @default.
- W4385301858 cites W4226264768 @default.
- W4385301858 cites W4229052826 @default.
- W4385301858 cites W4282841862 @default.
- W4385301858 cites W4283069704 @default.
- W4385301858 cites W4319297939 @default.
- W4385301858 cites W4353048371 @default.
- W4385301858 cites W4376522468 @default.
- W4385301858 cites W2947682249 @default.
- W4385301858 doi "https://doi.org/10.1016/j.tmp.2023.101147" @default.
- W4385301858 hasPublicationYear "2023" @default.
- W4385301858 type Work @default.
- W4385301858 citedByCount "0" @default.
- W4385301858 crossrefType "journal-article" @default.
- W4385301858 hasAuthorship W4385301858A5047439878 @default.