Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385308081> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4385308081 endingPage "3229" @default.
- W4385308081 startingPage "3229" @default.
- W4385308081 abstract "Industrial anomaly detection, which relies on the analysis of industrial internet of things (IIoT) sensor data, is a critical element for guaranteeing the quality and safety of industrial manufacturing. Current solutions normally apply edge–cloud IIoT architecture. The edge side collects sensor data in the field, while the cloud side receives sensor data and analyzes anomalies to accomplish it. The more complete the data sent to the cloud side, the higher the anomaly-detection accuracy that can be achieved. However, it will be extremely expensive to collect all sensor data and transmit them to the cloud side due to the massive amounts and distributed deployments of IIoT sensors requiring expensive network traffics and computational capacities. Thus, it becomes a trade-off problem: “How to reduce data transmission under the premise of ensuring the accuracy of anomaly detection?”. To this end, the paper proposes a binary-convolution data-reduction network for edge–cloud IIoT anomaly detection. It collects raw sensor data and extracts their features at the edge side, and receives data features to discover anomalies at the cloud side. To implement this, a time-scalar binary feature encoder is proposed and deployed on the edge side, encoding raw data into time-series binary vectors. Then, a binary-convolution data-reduction network is presented at the edge side to extract data features that significantly reduce the data size without losing critical information. At last, a real-time anomaly detector based on hierarchical temporal memory (HTM) is established on the cloud side to identify anomalies. The proposed model is validated on the NAB dataset, and achieves 70.0, 64.6 and 74.0 on the three evaluation metrics of SP, RLFP and RLFN, while obtaining a reduction rate of 96.19%. Extensive experimental results demonstrate that the proposed method achieves new state-of-the-art results in anomaly detection with data reduction. The proposed method is also deployed on a real-world industrial project as a case study to prove the feasibility and effectiveness of the proposed method." @default.
- W4385308081 created "2023-07-28" @default.
- W4385308081 creator A5005283318 @default.
- W4385308081 creator A5023491466 @default.
- W4385308081 creator A5044796317 @default.
- W4385308081 creator A5061251283 @default.
- W4385308081 date "2023-07-26" @default.
- W4385308081 modified "2023-09-25" @default.
- W4385308081 title "Binary-Convolution Data-Reduction Network for Edge–Cloud IIoT Anomaly Detection" @default.
- W4385308081 cites W2101015150 @default.
- W4385308081 cites W2123967542 @default.
- W4385308081 cites W2191950414 @default.
- W4385308081 cites W2256894031 @default.
- W4385308081 cites W2392395307 @default.
- W4385308081 cites W2594788700 @default.
- W4385308081 cites W2620661538 @default.
- W4385308081 cites W2808365057 @default.
- W4385308081 cites W2895574964 @default.
- W4385308081 cites W2950860789 @default.
- W4385308081 cites W2964284952 @default.
- W4385308081 cites W2970655765 @default.
- W4385308081 cites W2972530384 @default.
- W4385308081 cites W2979312760 @default.
- W4385308081 cites W2995140724 @default.
- W4385308081 cites W3001771027 @default.
- W4385308081 cites W3008723941 @default.
- W4385308081 cites W3042046988 @default.
- W4385308081 cites W3100546764 @default.
- W4385308081 cites W3116334802 @default.
- W4385308081 cites W3135550350 @default.
- W4385308081 cites W3151356057 @default.
- W4385308081 cites W3178367256 @default.
- W4385308081 cites W3183615570 @default.
- W4385308081 cites W4214810275 @default.
- W4385308081 cites W4294631765 @default.
- W4385308081 doi "https://doi.org/10.3390/electronics12153229" @default.
- W4385308081 hasPublicationYear "2023" @default.
- W4385308081 type Work @default.
- W4385308081 citedByCount "0" @default.
- W4385308081 crossrefType "journal-article" @default.
- W4385308081 hasAuthorship W4385308081A5005283318 @default.
- W4385308081 hasAuthorship W4385308081A5023491466 @default.
- W4385308081 hasAuthorship W4385308081A5044796317 @default.
- W4385308081 hasAuthorship W4385308081A5061251283 @default.
- W4385308081 hasBestOaLocation W43853080811 @default.
- W4385308081 hasConcept C111335779 @default.
- W4385308081 hasConcept C111919701 @default.
- W4385308081 hasConcept C124101348 @default.
- W4385308081 hasConcept C138236772 @default.
- W4385308081 hasConcept C154945302 @default.
- W4385308081 hasConcept C162307627 @default.
- W4385308081 hasConcept C2524010 @default.
- W4385308081 hasConcept C33923547 @default.
- W4385308081 hasConcept C41008148 @default.
- W4385308081 hasConcept C739882 @default.
- W4385308081 hasConcept C79403827 @default.
- W4385308081 hasConcept C79974875 @default.
- W4385308081 hasConceptScore W4385308081C111335779 @default.
- W4385308081 hasConceptScore W4385308081C111919701 @default.
- W4385308081 hasConceptScore W4385308081C124101348 @default.
- W4385308081 hasConceptScore W4385308081C138236772 @default.
- W4385308081 hasConceptScore W4385308081C154945302 @default.
- W4385308081 hasConceptScore W4385308081C162307627 @default.
- W4385308081 hasConceptScore W4385308081C2524010 @default.
- W4385308081 hasConceptScore W4385308081C33923547 @default.
- W4385308081 hasConceptScore W4385308081C41008148 @default.
- W4385308081 hasConceptScore W4385308081C739882 @default.
- W4385308081 hasConceptScore W4385308081C79403827 @default.
- W4385308081 hasConceptScore W4385308081C79974875 @default.
- W4385308081 hasIssue "15" @default.
- W4385308081 hasLocation W43853080811 @default.
- W4385308081 hasOpenAccess W4385308081 @default.
- W4385308081 hasPrimaryLocation W43853080811 @default.
- W4385308081 hasRelatedWork W2534668683 @default.
- W4385308081 hasRelatedWork W2942586735 @default.
- W4385308081 hasRelatedWork W3115363434 @default.
- W4385308081 hasRelatedWork W3211931762 @default.
- W4385308081 hasRelatedWork W4225757241 @default.
- W4385308081 hasRelatedWork W4229981831 @default.
- W4385308081 hasRelatedWork W4307482744 @default.
- W4385308081 hasRelatedWork W4312335810 @default.
- W4385308081 hasRelatedWork W4375928818 @default.
- W4385308081 hasRelatedWork W4385414328 @default.
- W4385308081 hasVolume "12" @default.
- W4385308081 isParatext "false" @default.
- W4385308081 isRetracted "false" @default.
- W4385308081 workType "article" @default.