Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385308932> ?p ?o ?g. }
- W4385308932 endingPage "8588" @default.
- W4385308932 startingPage "8588" @default.
- W4385308932 abstract "Paper is in the scope of moisture-related problems which are connected with mold threat in buildings, sick building syndrome (SBS) as well as application of electronic nose for evaluation of different building envelopes and building materials. The machine learning methods used to analyze multidimensional signals are important components of the e-nose system. These multidimensional signals are derived from a gas sensor array, which, together with instrumentation, constitute the hardware of this system. The accuracy of the classification and the correctness of the classification of mold threat in buildings largely depend on the appropriate selection of the data analysis methods used. This paper proposes a method of data analysis using Principal Component Analysis, metric multidimensional scaling and Kohonen self-organizing map, which are unsupervised machine learning methods, to visualize and reduce the dimensionality of the data. For the final classification of observations and the identification of datasets from gas sensor arrays analyzing air from buildings threatened by mold, as well as from other reference materials, supervised learning methods such as hierarchical cluster analysis, MLP neural network and the random forest method were used." @default.
- W4385308932 created "2023-07-28" @default.
- W4385308932 creator A5007835845 @default.
- W4385308932 creator A5008990453 @default.
- W4385308932 creator A5009070681 @default.
- W4385308932 creator A5035108261 @default.
- W4385308932 creator A5037504252 @default.
- W4385308932 creator A5044283566 @default.
- W4385308932 creator A5053804092 @default.
- W4385308932 creator A5070052013 @default.
- W4385308932 date "2023-07-26" @default.
- W4385308932 modified "2023-09-26" @default.
- W4385308932 title "Application of Dimensionality Reduction and Machine Learning Methods for the Interpretation of Gas Sensor Array Readouts from Mold-Threatened Buildings" @default.
- W4385308932 cites W1558389304 @default.
- W4385308932 cites W1605688901 @default.
- W4385308932 cites W1885937115 @default.
- W4385308932 cites W1928349371 @default.
- W4385308932 cites W1965780292 @default.
- W4385308932 cites W1974656511 @default.
- W4385308932 cites W1977803117 @default.
- W4385308932 cites W1979495695 @default.
- W4385308932 cites W1979969528 @default.
- W4385308932 cites W1993436046 @default.
- W4385308932 cites W2002016471 @default.
- W4385308932 cites W2007482043 @default.
- W4385308932 cites W2013478391 @default.
- W4385308932 cites W2016381774 @default.
- W4385308932 cites W2025663869 @default.
- W4385308932 cites W2026513874 @default.
- W4385308932 cites W2027832294 @default.
- W4385308932 cites W2035753486 @default.
- W4385308932 cites W2038347420 @default.
- W4385308932 cites W2044985164 @default.
- W4385308932 cites W2054334579 @default.
- W4385308932 cites W2064815513 @default.
- W4385308932 cites W2074523926 @default.
- W4385308932 cites W2075180403 @default.
- W4385308932 cites W2091288193 @default.
- W4385308932 cites W2107842672 @default.
- W4385308932 cites W2114258851 @default.
- W4385308932 cites W2114357073 @default.
- W4385308932 cites W2128728535 @default.
- W4385308932 cites W2137554695 @default.
- W4385308932 cites W2147658088 @default.
- W4385308932 cites W2152768650 @default.
- W4385308932 cites W2163947539 @default.
- W4385308932 cites W2169405423 @default.
- W4385308932 cites W2171415339 @default.
- W4385308932 cites W2171642129 @default.
- W4385308932 cites W2274415730 @default.
- W4385308932 cites W2294798173 @default.
- W4385308932 cites W2468348722 @default.
- W4385308932 cites W2620300958 @default.
- W4385308932 cites W2621370255 @default.
- W4385308932 cites W2689878159 @default.
- W4385308932 cites W2736831103 @default.
- W4385308932 cites W2793657534 @default.
- W4385308932 cites W2884518151 @default.
- W4385308932 cites W2911964244 @default.
- W4385308932 cites W2936802005 @default.
- W4385308932 cites W2969598849 @default.
- W4385308932 cites W2971578287 @default.
- W4385308932 cites W2990427812 @default.
- W4385308932 cites W2996759025 @default.
- W4385308932 cites W3022974158 @default.
- W4385308932 cites W3080826916 @default.
- W4385308932 cites W3153059042 @default.
- W4385308932 cites W3158064147 @default.
- W4385308932 cites W3200580784 @default.
- W4385308932 cites W4233224392 @default.
- W4385308932 cites W4238805501 @default.
- W4385308932 cites W4254687493 @default.
- W4385308932 cites W4283446582 @default.
- W4385308932 cites W429766147 @default.
- W4385308932 cites W4309944284 @default.
- W4385308932 cites W4312220779 @default.
- W4385308932 cites W4313472260 @default.
- W4385308932 cites W4317543184 @default.
- W4385308932 cites W4324339609 @default.
- W4385308932 cites W4379740492 @default.
- W4385308932 cites W65738273 @default.
- W4385308932 doi "https://doi.org/10.3390/app13158588" @default.
- W4385308932 hasPublicationYear "2023" @default.
- W4385308932 type Work @default.
- W4385308932 citedByCount "0" @default.
- W4385308932 crossrefType "journal-article" @default.
- W4385308932 hasAuthorship W4385308932A5007835845 @default.
- W4385308932 hasAuthorship W4385308932A5008990453 @default.
- W4385308932 hasAuthorship W4385308932A5009070681 @default.
- W4385308932 hasAuthorship W4385308932A5035108261 @default.
- W4385308932 hasAuthorship W4385308932A5037504252 @default.
- W4385308932 hasAuthorship W4385308932A5044283566 @default.
- W4385308932 hasAuthorship W4385308932A5053804092 @default.
- W4385308932 hasAuthorship W4385308932A5070052013 @default.
- W4385308932 hasBestOaLocation W43853089321 @default.
- W4385308932 hasConcept C119857082 @default.
- W4385308932 hasConcept C124101348 @default.
- W4385308932 hasConcept C153180895 @default.