Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385310318> ?p ?o ?g. }
- W4385310318 abstract "Abstract Anaerobic microbial corrosion of iron-containing metals causes extensive economic damage. Some microbes are capable of direct metal-to-microbe electron transfer (electrobiocorrosion), but the prevalence of electrobiocorrosion among diverse methanogens and acetogens is poorly understood because of a lack of tools for their genetic manipulation. Previous studies have suggested that respiration with 316L stainless steel as the electron donor is indicative of electrobiocorrosion because, unlike pure Fe 0 , 316L stainless steel does not abiotically generate H 2 as an intermediary electron carrier. Here we report that all of the methanogens ( Methanosarcina vacuolata , Methanothrix soehngenii , and Methanobacterium strain IM1) and acetogens ( Sporomusa ovata , Clostridium ljungdahlii ) evaluated respired with pure Fe 0 as the electron donor, but only M. vacuolata , Mx soehngenii , and S. ovata were capable of stainless steel electrobiocorrosion. The electrobiocorrosive methanogens required acetate as an additional energy source in order to produce methane from stainless steel. Co-cultures of S. ovata and Mx. soehngenii demonstrated how acetogens can provide acetate to methanogens during corrosion. Not only was Methanobacterium strain IM1 not capable of electrobiocorrosion, but it also did not accept electrons from Geobacter metallireducens , an effective electron- donating partner for direct interspecies electron transfer to all methanogens that can directly accept electrons from Fe 0 . The finding that M. vacuolata , Mx. soehngenii , and S. ovata are capable of electrobiocorrosion, despite a lack of the outer-surface c -type cytochromes previously found to be important in other electrobiocorrosive microbes, demonstrates that there are multiple microbial strategies for making electrical contact with Fe 0 . Impact Statement Understanding how anaerobic microbes receive electrons from Fe 0 is likely to lead to novel strategies for mitigating the corrosion of iron-containing metals, which has an enormous economic impact. Electrobiocorrosion, is a relatively recently recognized corrosion mechanism. It was previously demonstrated in pure cultures when Fe 0 oxidation was inhibited by deletion of genes for outer-surface c -type cytochromes known to be involved in other forms of extracellular electron exchange. However, many methanogens and acetogens lack obvious outer-surface electrical connections and are difficult to genetically manipulate. The study reported here provides an alternative approach to evaluating whether microbes are capable of electrobiocorrosion that does not require genetic manipulation. The results indicate that Methanobacterium strain IM1, is not electrobiocorrosive, in contrast to previous speculation. However, some methanogens and acetogens without known outer-surface c -type cytochromes do appear to be capable of electrobiocorrosion, suggesting that this corrosion mechanism may be more widespread than previously thought." @default.
- W4385310318 created "2023-07-28" @default.
- W4385310318 creator A5008743757 @default.
- W4385310318 creator A5021568652 @default.
- W4385310318 creator A5034043242 @default.
- W4385310318 creator A5052705284 @default.
- W4385310318 creator A5058663342 @default.
- W4385310318 date "2023-07-26" @default.
- W4385310318 modified "2023-10-12" @default.
- W4385310318 title "Electrobiocorrosion by Microbes without Outer-Surface Cytochromes" @default.
- W4385310318 cites W1527417625 @default.
- W4385310318 cites W1832626384 @default.
- W4385310318 cites W1967677046 @default.
- W4385310318 cites W1968829113 @default.
- W4385310318 cites W2022744472 @default.
- W4385310318 cites W2027085475 @default.
- W4385310318 cites W2033173310 @default.
- W4385310318 cites W2034648786 @default.
- W4385310318 cites W2044273126 @default.
- W4385310318 cites W2067856736 @default.
- W4385310318 cites W2075336956 @default.
- W4385310318 cites W2080732846 @default.
- W4385310318 cites W2084651364 @default.
- W4385310318 cites W2092206453 @default.
- W4385310318 cites W2092325983 @default.
- W4385310318 cites W2101168460 @default.
- W4385310318 cites W2106555379 @default.
- W4385310318 cites W2108779711 @default.
- W4385310318 cites W2111355389 @default.
- W4385310318 cites W2126231321 @default.
- W4385310318 cites W2151714294 @default.
- W4385310318 cites W2157443270 @default.
- W4385310318 cites W2160912195 @default.
- W4385310318 cites W2168456727 @default.
- W4385310318 cites W2266923912 @default.
- W4385310318 cites W2346839705 @default.
- W4385310318 cites W2464916674 @default.
- W4385310318 cites W2895191762 @default.
- W4385310318 cites W2901433055 @default.
- W4385310318 cites W2903020233 @default.
- W4385310318 cites W2912445730 @default.
- W4385310318 cites W2952757491 @default.
- W4385310318 cites W2968914272 @default.
- W4385310318 cites W2969831841 @default.
- W4385310318 cites W2969871035 @default.
- W4385310318 cites W2998739346 @default.
- W4385310318 cites W2999843354 @default.
- W4385310318 cites W3081642136 @default.
- W4385310318 cites W3095831492 @default.
- W4385310318 cites W3135619931 @default.
- W4385310318 cites W3162173089 @default.
- W4385310318 cites W3163508311 @default.
- W4385310318 cites W3175821831 @default.
- W4385310318 cites W3188060592 @default.
- W4385310318 cites W3212733301 @default.
- W4385310318 cites W4200103630 @default.
- W4385310318 cites W4229036057 @default.
- W4385310318 cites W4281560571 @default.
- W4385310318 cites W4282946109 @default.
- W4385310318 cites W4296876884 @default.
- W4385310318 cites W4309404080 @default.
- W4385310318 cites W4377085064 @default.
- W4385310318 cites W4377137615 @default.
- W4385310318 cites W4381489142 @default.
- W4385310318 doi "https://doi.org/10.1101/2023.07.26.550717" @default.
- W4385310318 hasPublicationYear "2023" @default.
- W4385310318 type Work @default.
- W4385310318 citedByCount "3" @default.
- W4385310318 countsByYear W43853103182023 @default.
- W4385310318 crossrefType "posted-content" @default.
- W4385310318 hasAuthorship W4385310318A5008743757 @default.
- W4385310318 hasAuthorship W4385310318A5021568652 @default.
- W4385310318 hasAuthorship W4385310318A5034043242 @default.
- W4385310318 hasAuthorship W4385310318A5052705284 @default.
- W4385310318 hasAuthorship W4385310318A5058663342 @default.
- W4385310318 hasBestOaLocation W43853103181 @default.
- W4385310318 hasConcept C104317684 @default.
- W4385310318 hasConcept C107872376 @default.
- W4385310318 hasConcept C123669783 @default.
- W4385310318 hasConcept C161790260 @default.
- W4385310318 hasConcept C178790620 @default.
- W4385310318 hasConcept C185592680 @default.
- W4385310318 hasConcept C201879378 @default.
- W4385310318 hasConcept C2776062086 @default.
- W4385310318 hasConcept C2778148179 @default.
- W4385310318 hasConcept C2778589620 @default.
- W4385310318 hasConcept C2779824996 @default.
- W4385310318 hasConcept C516920438 @default.
- W4385310318 hasConcept C523546767 @default.
- W4385310318 hasConcept C54355233 @default.
- W4385310318 hasConcept C550995028 @default.
- W4385310318 hasConcept C55493867 @default.
- W4385310318 hasConcept C58123911 @default.
- W4385310318 hasConcept C86803240 @default.
- W4385310318 hasConceptScore W4385310318C104317684 @default.
- W4385310318 hasConceptScore W4385310318C107872376 @default.
- W4385310318 hasConceptScore W4385310318C123669783 @default.
- W4385310318 hasConceptScore W4385310318C161790260 @default.
- W4385310318 hasConceptScore W4385310318C178790620 @default.
- W4385310318 hasConceptScore W4385310318C185592680 @default.