Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385319414> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4385319414 abstract "Discharges from combined sewer overflows (CSO) are unacceptable, particularly when they are not linked to wet weather. This paper presents an evaluation of an online artificial-intelligence-based analytics system to give early warning of such overflows due to system degradation. It integrates a cloud-based data-driven system using artificial neural networks and fuzzy logic with near real-time communications, taking advantage of the increasingly available real-time monitoring of water depths in CSO chambers. The data-driven system has been developed to be applicable to the vast majority of CSO and requiring a minimum period of data for training. Results are presented for a live assessment of 50 CSO assets over a six-month period, demonstrating continuous assessment of performance and reduction of CSO discharges. The system achieved a high true positive rate (86.7% on confirmed positives) and low false positive rate (3.4%). Such early warnings of CSO performance degradation are vital to proactively manage our aging water infrastructure and to achieve acceptable environmental, regulatory, and reputational performance. The system enables improved performance from legacy infrastructure without gross capital investment.Practical ApplicationsCombined sewerage networks convey wastewater from residential and commercial properties as well as rainfall runoff from urban catchments. The CSO provides a relief valve when runoff from rainfall would overwhelm the downstream network and treatment works. Excess water is spilled into a nearby watercourse, ideally when the watercourse flow has increased to provide additional dilution and thus minimize impacts. If a blockage or other defect downstream of a CSO results in a decrease in discharge capacity, the CSO can spill earlier than it is designed to or even in dry weather. Prior to the deployment of level sensors, such premature spills could only be identified through a visible spill or water quality impact. Sensors allow water utilities to monitor depths in CSO chambers; however, each utility will have a large number of CSO, which means that an automated system is needed to identify premature spills. This paper discusses the development and validation results obtained from a pilot deployment of a data analytics solution to identify abnormal water depths in a CSO." @default.
- W4385319414 created "2023-07-28" @default.
- W4385319414 creator A5015496271 @default.
- W4385319414 creator A5015924587 @default.
- W4385319414 creator A5021554616 @default.
- W4385319414 creator A5024770344 @default.
- W4385319414 creator A5041943502 @default.
- W4385319414 creator A5054002562 @default.
- W4385319414 creator A5056513766 @default.
- W4385319414 creator A5072876958 @default.
- W4385319414 date "2023-10-01" @default.
- W4385319414 modified "2023-09-23" @default.
- W4385319414 title "Cloud-Based Artificial Intelligence Analytics to Assess Combined Sewer Overflow Performance" @default.
- W4385319414 cites W1178827009 @default.
- W4385319414 cites W1274732940 @default.
- W4385319414 cites W1964751383 @default.
- W4385319414 cites W1972191444 @default.
- W4385319414 cites W1992176519 @default.
- W4385319414 cites W2076751630 @default.
- W4385319414 cites W2106322584 @default.
- W4385319414 cites W2137983211 @default.
- W4385319414 cites W2168776126 @default.
- W4385319414 cites W2394876026 @default.
- W4385319414 cites W2508213845 @default.
- W4385319414 cites W2524876898 @default.
- W4385319414 cites W2769851728 @default.
- W4385319414 cites W2770601771 @default.
- W4385319414 cites W2804729129 @default.
- W4385319414 cites W2919115771 @default.
- W4385319414 cites W2997675015 @default.
- W4385319414 cites W3023671377 @default.
- W4385319414 cites W3129768186 @default.
- W4385319414 cites W3135734850 @default.
- W4385319414 cites W4210334012 @default.
- W4385319414 cites W4214925094 @default.
- W4385319414 cites W4308420866 @default.
- W4385319414 cites W4309316921 @default.
- W4385319414 doi "https://doi.org/10.1061/jwrmd5.wreng-5859" @default.
- W4385319414 hasPublicationYear "2023" @default.
- W4385319414 type Work @default.
- W4385319414 citedByCount "0" @default.
- W4385319414 crossrefType "journal-article" @default.
- W4385319414 hasAuthorship W4385319414A5015496271 @default.
- W4385319414 hasAuthorship W4385319414A5015924587 @default.
- W4385319414 hasAuthorship W4385319414A5021554616 @default.
- W4385319414 hasAuthorship W4385319414A5024770344 @default.
- W4385319414 hasAuthorship W4385319414A5041943502 @default.
- W4385319414 hasAuthorship W4385319414A5054002562 @default.
- W4385319414 hasAuthorship W4385319414A5056513766 @default.
- W4385319414 hasAuthorship W4385319414A5072876958 @default.
- W4385319414 hasConcept C111919701 @default.
- W4385319414 hasConcept C165895018 @default.
- W4385319414 hasConcept C173051318 @default.
- W4385319414 hasConcept C18903297 @default.
- W4385319414 hasConcept C2778583955 @default.
- W4385319414 hasConcept C39432304 @default.
- W4385319414 hasConcept C41008148 @default.
- W4385319414 hasConcept C50477045 @default.
- W4385319414 hasConcept C77088390 @default.
- W4385319414 hasConcept C79158427 @default.
- W4385319414 hasConcept C79974875 @default.
- W4385319414 hasConcept C86803240 @default.
- W4385319414 hasConcept C87717796 @default.
- W4385319414 hasConceptScore W4385319414C111919701 @default.
- W4385319414 hasConceptScore W4385319414C165895018 @default.
- W4385319414 hasConceptScore W4385319414C173051318 @default.
- W4385319414 hasConceptScore W4385319414C18903297 @default.
- W4385319414 hasConceptScore W4385319414C2778583955 @default.
- W4385319414 hasConceptScore W4385319414C39432304 @default.
- W4385319414 hasConceptScore W4385319414C41008148 @default.
- W4385319414 hasConceptScore W4385319414C50477045 @default.
- W4385319414 hasConceptScore W4385319414C77088390 @default.
- W4385319414 hasConceptScore W4385319414C79158427 @default.
- W4385319414 hasConceptScore W4385319414C79974875 @default.
- W4385319414 hasConceptScore W4385319414C86803240 @default.
- W4385319414 hasConceptScore W4385319414C87717796 @default.
- W4385319414 hasIssue "10" @default.
- W4385319414 hasLocation W43853194141 @default.
- W4385319414 hasOpenAccess W4385319414 @default.
- W4385319414 hasPrimaryLocation W43853194141 @default.
- W4385319414 hasRelatedWork W2012154220 @default.
- W4385319414 hasRelatedWork W2057641958 @default.
- W4385319414 hasRelatedWork W2069283439 @default.
- W4385319414 hasRelatedWork W2088354866 @default.
- W4385319414 hasRelatedWork W2371081374 @default.
- W4385319414 hasRelatedWork W2373140746 @default.
- W4385319414 hasRelatedWork W2393500329 @default.
- W4385319414 hasRelatedWork W2401456539 @default.
- W4385319414 hasRelatedWork W2922040481 @default.
- W4385319414 hasRelatedWork W3186216430 @default.
- W4385319414 hasVolume "149" @default.
- W4385319414 isParatext "false" @default.
- W4385319414 isRetracted "false" @default.
- W4385319414 workType "article" @default.