Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385320410> ?p ?o ?g. }
- W4385320410 endingPage "108421" @default.
- W4385320410 startingPage "108421" @default.
- W4385320410 abstract "State-of-charge (SOC) estimation plays a crucial role in battery management systems to ensure safe and reliable operation. However, SOC estimation remains challenging due to the dynamic nature of battery systems and varying ambient conditions. Data-driven methods have emerged as effective tools for analyzing nonlinear dynamical systems, but their performance heavily relies on data quality. In actual applications, data susceptible to distortions caused by external factors such as sensor failure, circuitry, and temperature variations, leading to degraded model performance. To address the performance degradation resulting from data quality deterioration, this paper introduces a denoising autoencoder is implemented as a stacked multi-layer perceptron, which learns to reconstruct distorted data. Furthermore, we propose the ensemble method that combines the autoencoder with an estimation model for SOC estimation in lithium-ion batteries. The effectiveness of the proposed model is demonstrated through tests conducted on a dataset comprising drive cycle profile of Panasonic 18650PF cells. The model validated under two ambient temperatures scenarios: identical and different, using a distorted dataset with added randomly added noise and dropout. The experimental results reveal that the proposed model achieved a 3 % error in training the drive profile relative to the actual values at different ambient temperatures. When compared to the plain model, the proposed ensemble model showed an increased RMSE of 4 %. Additionally, the performance of different estimation models was compared, with the LSTM model achieving an RMSE 0.67 at different ambient temperatures, outperforming the Support Vector Regression (SVR) with an RMSE 1.35 and the Extended Kalman Filter (EKF) with an RMSE of 0.87." @default.
- W4385320410 created "2023-07-28" @default.
- W4385320410 creator A5003154594 @default.
- W4385320410 creator A5017290490 @default.
- W4385320410 creator A5042543366 @default.
- W4385320410 creator A5056989509 @default.
- W4385320410 date "2023-11-01" @default.
- W4385320410 modified "2023-10-18" @default.
- W4385320410 title "Investigation of denoising autoencoder-based deep learning model in noise-riding experimental data for reliable state-of-charge estimation" @default.
- W4385320410 cites W2021481199 @default.
- W4385320410 cites W2032952916 @default.
- W4385320410 cites W2064675550 @default.
- W4385320410 cites W2084221323 @default.
- W4385320410 cites W2269200853 @default.
- W4385320410 cites W2613389393 @default.
- W4385320410 cites W2884238387 @default.
- W4385320410 cites W2899828239 @default.
- W4385320410 cites W2955325445 @default.
- W4385320410 cites W2973538758 @default.
- W4385320410 cites W2985942842 @default.
- W4385320410 cites W3012309884 @default.
- W4385320410 cites W3035704836 @default.
- W4385320410 cites W3035785571 @default.
- W4385320410 cites W3084393668 @default.
- W4385320410 cites W3105810819 @default.
- W4385320410 cites W3109435056 @default.
- W4385320410 cites W3110356333 @default.
- W4385320410 cites W3138581309 @default.
- W4385320410 cites W3173751602 @default.
- W4385320410 cites W3202060642 @default.
- W4385320410 cites W4280628529 @default.
- W4385320410 cites W4313188566 @default.
- W4385320410 doi "https://doi.org/10.1016/j.est.2023.108421" @default.
- W4385320410 hasPublicationYear "2023" @default.
- W4385320410 type Work @default.
- W4385320410 citedByCount "0" @default.
- W4385320410 crossrefType "journal-article" @default.
- W4385320410 hasAuthorship W4385320410A5003154594 @default.
- W4385320410 hasAuthorship W4385320410A5017290490 @default.
- W4385320410 hasAuthorship W4385320410A5042543366 @default.
- W4385320410 hasAuthorship W4385320410A5056989509 @default.
- W4385320410 hasConcept C101738243 @default.
- W4385320410 hasConcept C105795698 @default.
- W4385320410 hasConcept C115961682 @default.
- W4385320410 hasConcept C119857082 @default.
- W4385320410 hasConcept C121332964 @default.
- W4385320410 hasConcept C139945424 @default.
- W4385320410 hasConcept C153180895 @default.
- W4385320410 hasConcept C154945302 @default.
- W4385320410 hasConcept C157286648 @default.
- W4385320410 hasConcept C163258240 @default.
- W4385320410 hasConcept C163294075 @default.
- W4385320410 hasConcept C179717631 @default.
- W4385320410 hasConcept C206833254 @default.
- W4385320410 hasConcept C2776145597 @default.
- W4385320410 hasConcept C2776582896 @default.
- W4385320410 hasConcept C33923547 @default.
- W4385320410 hasConcept C41008148 @default.
- W4385320410 hasConcept C50644808 @default.
- W4385320410 hasConcept C555008776 @default.
- W4385320410 hasConcept C60908668 @default.
- W4385320410 hasConcept C62520636 @default.
- W4385320410 hasConcept C99498987 @default.
- W4385320410 hasConceptScore W4385320410C101738243 @default.
- W4385320410 hasConceptScore W4385320410C105795698 @default.
- W4385320410 hasConceptScore W4385320410C115961682 @default.
- W4385320410 hasConceptScore W4385320410C119857082 @default.
- W4385320410 hasConceptScore W4385320410C121332964 @default.
- W4385320410 hasConceptScore W4385320410C139945424 @default.
- W4385320410 hasConceptScore W4385320410C153180895 @default.
- W4385320410 hasConceptScore W4385320410C154945302 @default.
- W4385320410 hasConceptScore W4385320410C157286648 @default.
- W4385320410 hasConceptScore W4385320410C163258240 @default.
- W4385320410 hasConceptScore W4385320410C163294075 @default.
- W4385320410 hasConceptScore W4385320410C179717631 @default.
- W4385320410 hasConceptScore W4385320410C206833254 @default.
- W4385320410 hasConceptScore W4385320410C2776145597 @default.
- W4385320410 hasConceptScore W4385320410C2776582896 @default.
- W4385320410 hasConceptScore W4385320410C33923547 @default.
- W4385320410 hasConceptScore W4385320410C41008148 @default.
- W4385320410 hasConceptScore W4385320410C50644808 @default.
- W4385320410 hasConceptScore W4385320410C555008776 @default.
- W4385320410 hasConceptScore W4385320410C60908668 @default.
- W4385320410 hasConceptScore W4385320410C62520636 @default.
- W4385320410 hasConceptScore W4385320410C99498987 @default.
- W4385320410 hasFunder F4320321681 @default.
- W4385320410 hasFunder F4320322099 @default.
- W4385320410 hasFunder F4320335199 @default.
- W4385320410 hasLocation W43853204101 @default.
- W4385320410 hasOpenAccess W4385320410 @default.
- W4385320410 hasPrimaryLocation W43853204101 @default.
- W4385320410 hasRelatedWork W137313877 @default.
- W4385320410 hasRelatedWork W1489969923 @default.
- W4385320410 hasRelatedWork W2091943352 @default.
- W4385320410 hasRelatedWork W2749461815 @default.
- W4385320410 hasRelatedWork W2890929759 @default.
- W4385320410 hasRelatedWork W3106494386 @default.
- W4385320410 hasRelatedWork W3185179407 @default.