Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385320690> ?p ?o ?g. }
- W4385320690 endingPage "722" @default.
- W4385320690 startingPage "722" @default.
- W4385320690 abstract "In this article, we intend to introduce and study a new two-parameter distribution as a new extension of the power Topp–Leone (PTL) distribution called the Kavya–Manoharan PTL (KMPTL) distribution. Several mathematical and statistical features of the KMPTL distribution, such as the quantile function, moments, generating function, and incomplete moments, are calculated. Some measures of entropy are investigated. The cumulative residual Rényi entropy (CRRE) is calculated. To estimate the parameters of the KMPTL distribution, both maximum likelihood and Bayesian estimation methods are used under simple random sample (SRS) and ranked set sampling (RSS). The simulation study was performed to be able to verify the model parameters of the KMPTL distribution using SRS and RSS to demonstrate that RSS is more efficient than SRS. We demonstrated that the KMPTL distribution has more flexibility than the PTL distribution and the other nine competitive statistical distributions: PTL, unit-Gompertz, unit-Lindley, Topp–Leone, unit generalized log Burr XII, unit exponential Pareto, Kumaraswamy, beta, Marshall-Olkin Kumaraswamy distributions employing two real-world datasets." @default.
- W4385320690 created "2023-07-28" @default.
- W4385320690 creator A5013570032 @default.
- W4385320690 creator A5025256366 @default.
- W4385320690 creator A5026468035 @default.
- W4385320690 creator A5029121877 @default.
- W4385320690 creator A5033179471 @default.
- W4385320690 creator A5074635060 @default.
- W4385320690 date "2023-07-25" @default.
- W4385320690 modified "2023-10-02" @default.
- W4385320690 title "Bayesian and Non-Bayesian Estimation for a New Extension of Power Topp–Leone Distribution under Ranked Set Sampling with Applications" @default.
- W4385320690 cites W1983211478 @default.
- W4385320690 cites W1986049907 @default.
- W4385320690 cites W1993019643 @default.
- W4385320690 cites W2001391324 @default.
- W4385320690 cites W2049279961 @default.
- W4385320690 cites W2056760934 @default.
- W4385320690 cites W2057980080 @default.
- W4385320690 cites W2065826526 @default.
- W4385320690 cites W2083875149 @default.
- W4385320690 cites W2105739787 @default.
- W4385320690 cites W2126391818 @default.
- W4385320690 cites W2138309709 @default.
- W4385320690 cites W2140291117 @default.
- W4385320690 cites W2148527884 @default.
- W4385320690 cites W2295786958 @default.
- W4385320690 cites W2533547375 @default.
- W4385320690 cites W2637230222 @default.
- W4385320690 cites W2749766418 @default.
- W4385320690 cites W2773669025 @default.
- W4385320690 cites W2774617223 @default.
- W4385320690 cites W2794355030 @default.
- W4385320690 cites W2920630972 @default.
- W4385320690 cites W2924115541 @default.
- W4385320690 cites W2935894008 @default.
- W4385320690 cites W2963034040 @default.
- W4385320690 cites W2980700890 @default.
- W4385320690 cites W2990136089 @default.
- W4385320690 cites W2996977568 @default.
- W4385320690 cites W2999477977 @default.
- W4385320690 cites W3083613894 @default.
- W4385320690 cites W3091593397 @default.
- W4385320690 cites W3098865414 @default.
- W4385320690 cites W3111610564 @default.
- W4385320690 cites W3128951066 @default.
- W4385320690 cites W3137282901 @default.
- W4385320690 cites W3155825961 @default.
- W4385320690 cites W3171354104 @default.
- W4385320690 cites W3173887556 @default.
- W4385320690 cites W3176879538 @default.
- W4385320690 cites W3182552299 @default.
- W4385320690 cites W3186195695 @default.
- W4385320690 cites W3188940911 @default.
- W4385320690 cites W3195093425 @default.
- W4385320690 cites W3211265568 @default.
- W4385320690 cites W4229057616 @default.
- W4385320690 cites W4282980487 @default.
- W4385320690 cites W4283643975 @default.
- W4385320690 cites W4287146137 @default.
- W4385320690 cites W4293791132 @default.
- W4385320690 cites W4294838810 @default.
- W4385320690 cites W4308630541 @default.
- W4385320690 cites W4310235107 @default.
- W4385320690 cites W4312127377 @default.
- W4385320690 cites W4317243158 @default.
- W4385320690 cites W4318778678 @default.
- W4385320690 cites W4321789911 @default.
- W4385320690 cites W4362590284 @default.
- W4385320690 cites W4366090997 @default.
- W4385320690 cites W4366310815 @default.
- W4385320690 cites W4379210523 @default.
- W4385320690 doi "https://doi.org/10.3390/axioms12080722" @default.
- W4385320690 hasPublicationYear "2023" @default.
- W4385320690 type Work @default.
- W4385320690 citedByCount "0" @default.
- W4385320690 crossrefType "journal-article" @default.
- W4385320690 hasAuthorship W4385320690A5013570032 @default.
- W4385320690 hasAuthorship W4385320690A5025256366 @default.
- W4385320690 hasAuthorship W4385320690A5026468035 @default.
- W4385320690 hasAuthorship W4385320690A5029121877 @default.
- W4385320690 hasAuthorship W4385320690A5033179471 @default.
- W4385320690 hasAuthorship W4385320690A5074635060 @default.
- W4385320690 hasBestOaLocation W43853206901 @default.
- W4385320690 hasConcept C103784038 @default.
- W4385320690 hasConcept C105795698 @default.
- W4385320690 hasConcept C149717495 @default.
- W4385320690 hasConcept C160947583 @default.
- W4385320690 hasConcept C197055811 @default.
- W4385320690 hasConcept C28826006 @default.
- W4385320690 hasConcept C33923547 @default.
- W4385320690 hasConcept C47121976 @default.
- W4385320690 hasConcept C55350006 @default.
- W4385320690 hasConcept C57205106 @default.
- W4385320690 hasConcept C96040317 @default.
- W4385320690 hasConceptScore W4385320690C103784038 @default.
- W4385320690 hasConceptScore W4385320690C105795698 @default.
- W4385320690 hasConceptScore W4385320690C149717495 @default.
- W4385320690 hasConceptScore W4385320690C160947583 @default.