Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385320806> ?p ?o ?g. }
- W4385320806 endingPage "3708" @default.
- W4385320806 startingPage "3708" @default.
- W4385320806 abstract "The exploration of buried mineral deposits is required to generate innovative approaches and the integration of multi-source geoscientific datasets. Mining geochemistry methods have been generated based on the theory of multi-formational geochemical dispersion haloes. Satellite remote sensing data is a form of surficial geoscience datasets and can be considered as big data in terms of veracity and volume. The different alteration zones extracted using remote sensing methods have not been yet categorized based on the mineralogical and geochemical types (MGT) of anomalies and cannot discriminate blind mineralization (BM) from zone dispersed mineralization (ZDM). In this research, an innovative approach was developed to optimize remote sensing-based evidential variables using some constructed mining geochemistry models for a machine learning (ML)-based copper prospectivity mapping. Accordingly, several main steps were implemented and analyzed. Initially, the MGT model was executed by studying the distribution of indicator elements of lithogeochemical data extracted from 50 copper deposits from Commonwealth of Independent States (CIS) countries to identify the MGT of geochemical anomalies associated with copper mineralization. Then, the geochemical zonality model was constructed using the database of the porphyry copper deposits of Iran and Kazakhstan to evaluate the geochemical anomalies related to porphyry copper mineralization (e.g., the Saghari deposit located around the Chah-Musa deposit, Toroud-Chah Shirin belt, central north Iran). Subsequently, the results of mining geochemistry models were used to produce the geochemical evidential variable by vertical geochemical zonality (Vz) (Pb × Zn/Cu × Mo) and to optimize the remote sensing-based evidential variables. Finally, a random forest algorithm was applied to integrate the evidential variables for generating a provincial-scale prospectivity mapping of porphyry copper deposits in the Toroud-Chah Shirin belt. The results of this investigation substantiated that the machine learning (ML)-based integration of multi-source geoscientific datasets, such as mining geochemistry techniques and satellite remote sensing data, is an innovative and applicable approach for copper mineralization prospectivity mapping in metallogenic provinces." @default.
- W4385320806 created "2023-07-28" @default.
- W4385320806 creator A5010426660 @default.
- W4385320806 creator A5035548456 @default.
- W4385320806 creator A5084861735 @default.
- W4385320806 creator A5085075651 @default.
- W4385320806 date "2023-07-25" @default.
- W4385320806 modified "2023-09-23" @default.
- W4385320806 title "Machine Learning (ML)-Based Copper Mineralization Prospectivity Mapping (MPM) Using Mining Geochemistry Method and Remote Sensing Satellite Data" @default.
- W4385320806 cites W1506934582 @default.
- W4385320806 cites W1875061881 @default.
- W4385320806 cites W1882925433 @default.
- W4385320806 cites W1964438720 @default.
- W4385320806 cites W1964776411 @default.
- W4385320806 cites W1967380063 @default.
- W4385320806 cites W1969669722 @default.
- W4385320806 cites W1973595880 @default.
- W4385320806 cites W1976571841 @default.
- W4385320806 cites W1978053173 @default.
- W4385320806 cites W1983865151 @default.
- W4385320806 cites W1987928348 @default.
- W4385320806 cites W1989232026 @default.
- W4385320806 cites W1995182681 @default.
- W4385320806 cites W2006482983 @default.
- W4385320806 cites W2010602539 @default.
- W4385320806 cites W2011814952 @default.
- W4385320806 cites W2013133114 @default.
- W4385320806 cites W2015550944 @default.
- W4385320806 cites W2025105970 @default.
- W4385320806 cites W2031471068 @default.
- W4385320806 cites W2038519446 @default.
- W4385320806 cites W2044187701 @default.
- W4385320806 cites W2058392115 @default.
- W4385320806 cites W2060365046 @default.
- W4385320806 cites W2063711835 @default.
- W4385320806 cites W2064812486 @default.
- W4385320806 cites W2074506246 @default.
- W4385320806 cites W2074781866 @default.
- W4385320806 cites W2085926688 @default.
- W4385320806 cites W2086999348 @default.
- W4385320806 cites W2089482437 @default.
- W4385320806 cites W2101664201 @default.
- W4385320806 cites W2104958444 @default.
- W4385320806 cites W2113542238 @default.
- W4385320806 cites W2117467278 @default.
- W4385320806 cites W2122452972 @default.
- W4385320806 cites W2123772631 @default.
- W4385320806 cites W2125838356 @default.
- W4385320806 cites W2128598397 @default.
- W4385320806 cites W2129659014 @default.
- W4385320806 cites W2152753533 @default.
- W4385320806 cites W2153415869 @default.
- W4385320806 cites W2153684259 @default.
- W4385320806 cites W2294798173 @default.
- W4385320806 cites W2615492166 @default.
- W4385320806 cites W2740311783 @default.
- W4385320806 cites W2767155774 @default.
- W4385320806 cites W2883746869 @default.
- W4385320806 cites W2884409695 @default.
- W4385320806 cites W2896335697 @default.
- W4385320806 cites W2899056763 @default.
- W4385320806 cites W2910923652 @default.
- W4385320806 cites W2911964244 @default.
- W4385320806 cites W2918827223 @default.
- W4385320806 cites W2920641855 @default.
- W4385320806 cites W2936117331 @default.
- W4385320806 cites W2949528887 @default.
- W4385320806 cites W2968415286 @default.
- W4385320806 cites W2981927612 @default.
- W4385320806 cites W2989988850 @default.
- W4385320806 cites W3014811513 @default.
- W4385320806 cites W3016296757 @default.
- W4385320806 cites W3086183630 @default.
- W4385320806 cites W3128031946 @default.
- W4385320806 cites W3160991452 @default.
- W4385320806 cites W3195687265 @default.
- W4385320806 cites W342324839 @default.
- W4385320806 cites W4200541371 @default.
- W4385320806 cites W4206137329 @default.
- W4385320806 cites W4206665214 @default.
- W4385320806 cites W4212883601 @default.
- W4385320806 cites W4281690394 @default.
- W4385320806 cites W4319596913 @default.
- W4385320806 cites W4319600420 @default.
- W4385320806 cites W4322629113 @default.
- W4385320806 cites W4323040225 @default.
- W4385320806 cites W969570089 @default.
- W4385320806 doi "https://doi.org/10.3390/rs15153708" @default.
- W4385320806 hasPublicationYear "2023" @default.
- W4385320806 type Work @default.
- W4385320806 citedByCount "0" @default.
- W4385320806 crossrefType "journal-article" @default.
- W4385320806 hasAuthorship W4385320806A5010426660 @default.
- W4385320806 hasAuthorship W4385320806A5035548456 @default.
- W4385320806 hasAuthorship W4385320806A5084861735 @default.
- W4385320806 hasAuthorship W4385320806A5085075651 @default.
- W4385320806 hasBestOaLocation W43853208061 @default.
- W4385320806 hasConcept C109007969 @default.