Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385323205> ?p ?o ?g. }
- W4385323205 endingPage "106819" @default.
- W4385323205 startingPage "106819" @default.
- W4385323205 abstract "The acoustic emission (AE) technique is known for its sensitivity to early damage and is well-suited for online condition monitoring of rolling element bearings (REBs) in various industrial application scenarios. Nonetheless, identifying weak faults under varying speed and strong background noise conditions still remains challenging. In addition, the comprehensive modelling of AE signal from faulty REB in electromechanical systems is still a pending issue. In light of this, a well-considered model is firstly developed for the AE signal of faulty REBs in this work. After that, a novel bearing fault diagnosis framework based on semantic segmentation networks is devised. Precisely, the proposed framework consists of three main components: a preprocessing step depending on the signal segmentation algorithm, a diagnosis step using fault fingerprint mapping, and a postprocessing evaluation step supplemented by a density peak clustering (DPC) approach. We evaluate the presented procedures through simulation analysis and an experimental case under varying speed conditions. Meanwhile, the comparison with the original threshold-based fault fingerprint recognition algorithm is also conducted. The comprehensive results demonstrate the efficacy of identifying fault-associated fingerprint feature (FPF), indicating that the proposed framework holds promise for condition monitoring." @default.
- W4385323205 created "2023-07-28" @default.
- W4385323205 creator A5008505943 @default.
- W4385323205 creator A5045611682 @default.
- W4385323205 creator A5056499189 @default.
- W4385323205 creator A5059773794 @default.
- W4385323205 creator A5075819798 @default.
- W4385323205 creator A5084962263 @default.
- W4385323205 creator A5089646653 @default.
- W4385323205 date "2023-11-01" @default.
- W4385323205 modified "2023-10-12" @default.
- W4385323205 title "A novel acoustic emission signal segmentation network for bearing fault fingerprint feature extraction under varying speed conditions" @default.
- W4385323205 cites W1549274996 @default.
- W4385323205 cites W1964511482 @default.
- W4385323205 cites W1968104821 @default.
- W4385323205 cites W1974543974 @default.
- W4385323205 cites W2022059244 @default.
- W4385323205 cites W2065182739 @default.
- W4385323205 cites W2071293002 @default.
- W4385323205 cites W2084919742 @default.
- W4385323205 cites W2165835468 @default.
- W4385323205 cites W2204168354 @default.
- W4385323205 cites W2295840936 @default.
- W4385323205 cites W2467004254 @default.
- W4385323205 cites W2518753523 @default.
- W4385323205 cites W2613580180 @default.
- W4385323205 cites W2736186771 @default.
- W4385323205 cites W2767193645 @default.
- W4385323205 cites W2805713564 @default.
- W4385323205 cites W2893464634 @default.
- W4385323205 cites W2948523846 @default.
- W4385323205 cites W2948637995 @default.
- W4385323205 cites W2954016033 @default.
- W4385323205 cites W2970900664 @default.
- W4385323205 cites W3001741353 @default.
- W4385323205 cites W3004656052 @default.
- W4385323205 cites W3004688128 @default.
- W4385323205 cites W3006084481 @default.
- W4385323205 cites W3025171967 @default.
- W4385323205 cites W3037872117 @default.
- W4385323205 cites W3112875984 @default.
- W4385323205 cites W3116528219 @default.
- W4385323205 cites W3119254792 @default.
- W4385323205 cites W3123270137 @default.
- W4385323205 cites W3156463266 @default.
- W4385323205 cites W3162184805 @default.
- W4385323205 cites W3188325194 @default.
- W4385323205 cites W4213127506 @default.
- W4385323205 cites W4213230870 @default.
- W4385323205 cites W4213314633 @default.
- W4385323205 cites W4282979825 @default.
- W4385323205 cites W4283804496 @default.
- W4385323205 cites W4285412292 @default.
- W4385323205 cites W4293688670 @default.
- W4385323205 cites W4295962714 @default.
- W4385323205 cites W4309724987 @default.
- W4385323205 cites W4310863018 @default.
- W4385323205 cites W4312975111 @default.
- W4385323205 cites W4323353480 @default.
- W4385323205 doi "https://doi.org/10.1016/j.engappai.2023.106819" @default.
- W4385323205 hasPublicationYear "2023" @default.
- W4385323205 type Work @default.
- W4385323205 citedByCount "0" @default.
- W4385323205 crossrefType "journal-article" @default.
- W4385323205 hasAuthorship W4385323205A5008505943 @default.
- W4385323205 hasAuthorship W4385323205A5045611682 @default.
- W4385323205 hasAuthorship W4385323205A5056499189 @default.
- W4385323205 hasAuthorship W4385323205A5059773794 @default.
- W4385323205 hasAuthorship W4385323205A5075819798 @default.
- W4385323205 hasAuthorship W4385323205A5084962263 @default.
- W4385323205 hasAuthorship W4385323205A5089646653 @default.
- W4385323205 hasConcept C115961682 @default.
- W4385323205 hasConcept C121332964 @default.
- W4385323205 hasConcept C124101348 @default.
- W4385323205 hasConcept C127313418 @default.
- W4385323205 hasConcept C127413603 @default.
- W4385323205 hasConcept C138885662 @default.
- W4385323205 hasConcept C153180895 @default.
- W4385323205 hasConcept C154945302 @default.
- W4385323205 hasConcept C165205528 @default.
- W4385323205 hasConcept C174598085 @default.
- W4385323205 hasConcept C175551986 @default.
- W4385323205 hasConcept C199360897 @default.
- W4385323205 hasConcept C199978012 @default.
- W4385323205 hasConcept C21200559 @default.
- W4385323205 hasConcept C24326235 @default.
- W4385323205 hasConcept C24890656 @default.
- W4385323205 hasConcept C2776401178 @default.
- W4385323205 hasConcept C2777826928 @default.
- W4385323205 hasConcept C2779843651 @default.
- W4385323205 hasConcept C34736171 @default.
- W4385323205 hasConcept C41008148 @default.
- W4385323205 hasConcept C41895202 @default.
- W4385323205 hasConcept C52622490 @default.
- W4385323205 hasConcept C73555534 @default.
- W4385323205 hasConcept C89600930 @default.
- W4385323205 hasConcept C99498987 @default.
- W4385323205 hasConceptScore W4385323205C115961682 @default.