Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385323311> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4385323311 abstract "Connected automated driving has the potential to significantly improve urban traffic efficiency, e.g., by alleviating issues due to occlusion. Cooperative behavior planning can be employed to jointly optimize the motion of multiple vehicles. Most existing approaches to automatic intersection management, however, only consider fully automated traffic. In practice, mixed traffic, i.e., the simultaneous road usage by automated and human-driven vehicles, will be prevalent. The present work proposes to leverage reinforcement learning and a graph-based scene representation for cooperative multi-agent planning. We build upon our previous works that showed the applicability of such machine learning methods to fully automated traffic. The scene representation is extended for mixed traffic and considers uncertainty in the human drivers' intentions. In the simulation-based evaluation, we model measurement uncertainties through noise processes that are tuned using real-world data. The paper evaluates the proposed method against an enhanced first in - first out scheme, our baseline for mixed traffic management. With increasing share of automated vehicles, the learned planner significantly increases the vehicle throughput and reduces the delay due to interaction. Non-automated vehicles benefit virtually alike." @default.
- W4385323311 created "2023-07-28" @default.
- W4385323311 creator A5057378607 @default.
- W4385323311 creator A5063425315 @default.
- W4385323311 creator A5065440334 @default.
- W4385323311 date "2023-06-04" @default.
- W4385323311 modified "2023-10-14" @default.
- W4385323311 title "Automatic Intersection Management in Mixed Traffic Using Reinforcement Learning and Graph Neural Networks" @default.
- W4385323311 cites W1592601589 @default.
- W4385323311 cites W1965455100 @default.
- W4385323311 cites W2080782477 @default.
- W4385323311 cites W2097545165 @default.
- W4385323311 cites W2137514195 @default.
- W4385323311 cites W2604314403 @default.
- W4385323311 cites W2613420336 @default.
- W4385323311 cites W2804902740 @default.
- W4385323311 cites W2897339298 @default.
- W4385323311 cites W2905173465 @default.
- W4385323311 cites W2940821858 @default.
- W4385323311 cites W2949319840 @default.
- W4385323311 cites W2990640452 @default.
- W4385323311 cites W3003329097 @default.
- W4385323311 cites W3091528360 @default.
- W4385323311 cites W3098187579 @default.
- W4385323311 cites W3118404077 @default.
- W4385323311 cites W3120580769 @default.
- W4385323311 cites W3121045039 @default.
- W4385323311 cites W3129932917 @default.
- W4385323311 cites W3180820165 @default.
- W4385323311 cites W3210354266 @default.
- W4385323311 cites W4285813049 @default.
- W4385323311 cites W4285813144 @default.
- W4385323311 cites W4308068558 @default.
- W4385323311 cites W4309592030 @default.
- W4385323311 doi "https://doi.org/10.1109/iv55152.2023.10186800" @default.
- W4385323311 hasPublicationYear "2023" @default.
- W4385323311 type Work @default.
- W4385323311 citedByCount "1" @default.
- W4385323311 countsByYear W43853233112023 @default.
- W4385323311 crossrefType "proceedings-article" @default.
- W4385323311 hasAuthorship W4385323311A5057378607 @default.
- W4385323311 hasAuthorship W4385323311A5063425315 @default.
- W4385323311 hasAuthorship W4385323311A5065440334 @default.
- W4385323311 hasBestOaLocation W43853233112 @default.
- W4385323311 hasConcept C119857082 @default.
- W4385323311 hasConcept C127413603 @default.
- W4385323311 hasConcept C132525143 @default.
- W4385323311 hasConcept C153083717 @default.
- W4385323311 hasConcept C154945302 @default.
- W4385323311 hasConcept C22212356 @default.
- W4385323311 hasConcept C2776999362 @default.
- W4385323311 hasConcept C41008148 @default.
- W4385323311 hasConcept C50644808 @default.
- W4385323311 hasConcept C64543145 @default.
- W4385323311 hasConcept C79403827 @default.
- W4385323311 hasConcept C80444323 @default.
- W4385323311 hasConcept C97541855 @default.
- W4385323311 hasConceptScore W4385323311C119857082 @default.
- W4385323311 hasConceptScore W4385323311C127413603 @default.
- W4385323311 hasConceptScore W4385323311C132525143 @default.
- W4385323311 hasConceptScore W4385323311C153083717 @default.
- W4385323311 hasConceptScore W4385323311C154945302 @default.
- W4385323311 hasConceptScore W4385323311C22212356 @default.
- W4385323311 hasConceptScore W4385323311C2776999362 @default.
- W4385323311 hasConceptScore W4385323311C41008148 @default.
- W4385323311 hasConceptScore W4385323311C50644808 @default.
- W4385323311 hasConceptScore W4385323311C64543145 @default.
- W4385323311 hasConceptScore W4385323311C79403827 @default.
- W4385323311 hasConceptScore W4385323311C80444323 @default.
- W4385323311 hasConceptScore W4385323311C97541855 @default.
- W4385323311 hasLocation W43853233111 @default.
- W4385323311 hasLocation W43853233112 @default.
- W4385323311 hasLocation W43853233113 @default.
- W4385323311 hasOpenAccess W4385323311 @default.
- W4385323311 hasPrimaryLocation W43853233111 @default.
- W4385323311 hasRelatedWork W2959276766 @default.
- W4385323311 hasRelatedWork W2961085424 @default.
- W4385323311 hasRelatedWork W3037422413 @default.
- W4385323311 hasRelatedWork W3049333768 @default.
- W4385323311 hasRelatedWork W3170628611 @default.
- W4385323311 hasRelatedWork W3212758104 @default.
- W4385323311 hasRelatedWork W3216163841 @default.
- W4385323311 hasRelatedWork W4206669594 @default.
- W4385323311 hasRelatedWork W4295941380 @default.
- W4385323311 hasRelatedWork W4319083788 @default.
- W4385323311 isParatext "false" @default.
- W4385323311 isRetracted "false" @default.
- W4385323311 workType "article" @default.