Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385324304> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4385324304 abstract "ABSTRACT Introduction Injuries induced by falls represent the main cause of failure in the Commando marine selection course of the French Army. In the present study we made the assumption that probing the posture might contribute to predicting the risk of fall-related injury at the individual level. Methods Before the start of the selection course, the postural signals of 99 male soldiers were recorded using static posturography while they were instructed to maintain balance with their eyes closed. The event to be predicted was a fall-related injury during the selection course that resulted in the definitive termination of participation. Following a machine learning methodology, we designed an artificial neural network model to predict the risk of fall-related injury from the descriptors of postural signal. Results The neural network model successfully predicted with 69.9% accuracy (95% CI=69.3-70.5) the occurrence of a fall-related injury event during the selection course from the selected descriptors of the posture. The area under the curve (AUC) value was 0.731 (95% CI=0.725-0.738), the sensitivity was 56.8% (95% CI=55.2-58.4), and the specificity was 77.7% (95% CI=76.8-0.78.6). Conclusion If confirmed with a larger sample, these findings suggest that probing the posture using static posturography and machine learning-based analysis might contribute to inform risk assessment of fall-related injury during military training, and could ultimately lead to the development of novel programs for personalized injury prevention in military population. KEY MESSAGES Fall-related injuries are a major concern that leads to failure in the French Commando marine selection course. This study demonstrates that analyzing the posture with machine learning can predict the risk of fall-related injury at the individual level. The findings may prompt the development of novel programs for personalized injury prevention in military settings." @default.
- W4385324304 created "2023-07-28" @default.
- W4385324304 creator A5004271831 @default.
- W4385324304 creator A5031716649 @default.
- W4385324304 creator A5050863188 @default.
- W4385324304 creator A5054151429 @default.
- W4385324304 creator A5077354920 @default.
- W4385324304 creator A5091460840 @default.
- W4385324304 creator A5092556616 @default.
- W4385324304 date "2023-07-27" @default.
- W4385324304 modified "2023-10-16" @default.
- W4385324304 title "Posture analysis in predicting fall-related injuries during French Commando marine selection course using machine learning" @default.
- W4385324304 cites W1943026297 @default.
- W4385324304 cites W1995425401 @default.
- W4385324304 cites W2001827134 @default.
- W4385324304 cites W2019442847 @default.
- W4385324304 cites W2044951073 @default.
- W4385324304 cites W2092813632 @default.
- W4385324304 cites W2125173681 @default.
- W4385324304 cites W2142823391 @default.
- W4385324304 cites W2143294049 @default.
- W4385324304 cites W2148143831 @default.
- W4385324304 cites W2195388416 @default.
- W4385324304 cites W2490459832 @default.
- W4385324304 cites W2581162656 @default.
- W4385324304 cites W2804586924 @default.
- W4385324304 cites W2805438216 @default.
- W4385324304 cites W3207601856 @default.
- W4385324304 cites W4384301264 @default.
- W4385324304 doi "https://doi.org/10.1101/2023.07.26.23293231" @default.
- W4385324304 hasPublicationYear "2023" @default.
- W4385324304 type Work @default.
- W4385324304 citedByCount "0" @default.
- W4385324304 crossrefType "posted-content" @default.
- W4385324304 hasAuthorship W4385324304A5004271831 @default.
- W4385324304 hasAuthorship W4385324304A5031716649 @default.
- W4385324304 hasAuthorship W4385324304A5050863188 @default.
- W4385324304 hasAuthorship W4385324304A5054151429 @default.
- W4385324304 hasAuthorship W4385324304A5077354920 @default.
- W4385324304 hasAuthorship W4385324304A5091460840 @default.
- W4385324304 hasAuthorship W4385324304A5092556616 @default.
- W4385324304 hasConcept C119857082 @default.
- W4385324304 hasConcept C154945302 @default.
- W4385324304 hasConcept C168031717 @default.
- W4385324304 hasConcept C2779650682 @default.
- W4385324304 hasConcept C2908647359 @default.
- W4385324304 hasConcept C41008148 @default.
- W4385324304 hasConcept C50644808 @default.
- W4385324304 hasConcept C71924100 @default.
- W4385324304 hasConcept C81917197 @default.
- W4385324304 hasConcept C99454951 @default.
- W4385324304 hasConcept C99508421 @default.
- W4385324304 hasConceptScore W4385324304C119857082 @default.
- W4385324304 hasConceptScore W4385324304C154945302 @default.
- W4385324304 hasConceptScore W4385324304C168031717 @default.
- W4385324304 hasConceptScore W4385324304C2779650682 @default.
- W4385324304 hasConceptScore W4385324304C2908647359 @default.
- W4385324304 hasConceptScore W4385324304C41008148 @default.
- W4385324304 hasConceptScore W4385324304C50644808 @default.
- W4385324304 hasConceptScore W4385324304C71924100 @default.
- W4385324304 hasConceptScore W4385324304C81917197 @default.
- W4385324304 hasConceptScore W4385324304C99454951 @default.
- W4385324304 hasConceptScore W4385324304C99508421 @default.
- W4385324304 hasLocation W43853243041 @default.
- W4385324304 hasOpenAccess W4385324304 @default.
- W4385324304 hasPrimaryLocation W43853243041 @default.
- W4385324304 hasRelatedWork W2012643694 @default.
- W4385324304 hasRelatedWork W2021169527 @default.
- W4385324304 hasRelatedWork W2053921512 @default.
- W4385324304 hasRelatedWork W2074170263 @default.
- W4385324304 hasRelatedWork W2282879342 @default.
- W4385324304 hasRelatedWork W2361540897 @default.
- W4385324304 hasRelatedWork W2407288207 @default.
- W4385324304 hasRelatedWork W2916852133 @default.
- W4385324304 hasRelatedWork W2958620626 @default.
- W4385324304 hasRelatedWork W4310118190 @default.
- W4385324304 isParatext "false" @default.
- W4385324304 isRetracted "false" @default.
- W4385324304 workType "article" @default.