Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385326118> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4385326118 endingPage "56" @default.
- W4385326118 startingPage "42" @default.
- W4385326118 abstract "The control of credit risk is a crucial task for financial institutions. Various subjective and quantitative indicators are used to forecast credit risks. Machine learning technology uses customer data to create accurate predictive models due to current AI/ML breakthroughs. Data from many institutions can be used to improve models. Nevertheless, exchanging data across numerous organizations incurs significant communication costs and compromises the privacy of client data. Credit institutions and financing solution providers benefit from expanded data sources via the arrival of technological developments (AI and Machine Learning, Deep learning). The possibilities to increase customer knowledge and improve their credit risk assessment and management system are increased. This research study explores federated learning techniques for credit risk management. The literature review covers research papers published between 2018 and 2022 and presents different federated learning techniques and their applications in credit risk assessment. The study shows that the choice of technique depends on the application’s specific requirements." @default.
- W4385326118 created "2023-07-28" @default.
- W4385326118 creator A5014120892 @default.
- W4385326118 creator A5020466839 @default.
- W4385326118 creator A5034303466 @default.
- W4385326118 date "2023-07-03" @default.
- W4385326118 modified "2023-09-23" @default.
- W4385326118 title "FEDERATED LEARNING TECHNIQUES APPLIED TO CREDIT RISK MANAGEMENT: A SYSTEMATIC LITERATURE REVIEW" @default.
- W4385326118 cites W2118320330 @default.
- W4385326118 cites W2779766358 @default.
- W4385326118 cites W2901338035 @default.
- W4385326118 cites W2912213068 @default.
- W4385326118 cites W2949734902 @default.
- W4385326118 cites W3014517104 @default.
- W4385326118 cites W3083961251 @default.
- W4385326118 cites W3086590218 @default.
- W4385326118 cites W3086809868 @default.
- W4385326118 cites W3119234025 @default.
- W4385326118 cites W3119381431 @default.
- W4385326118 cites W3164712068 @default.
- W4385326118 cites W3174530348 @default.
- W4385326118 cites W4206016309 @default.
- W4385326118 cites W4210259229 @default.
- W4385326118 cites W4213002759 @default.
- W4385326118 cites W4230637126 @default.
- W4385326118 cites W4285194168 @default.
- W4385326118 doi "https://doi.org/10.1080/07366981.2023.2241647" @default.
- W4385326118 hasPublicationYear "2023" @default.
- W4385326118 type Work @default.
- W4385326118 citedByCount "0" @default.
- W4385326118 crossrefType "journal-article" @default.
- W4385326118 hasAuthorship W4385326118A5014120892 @default.
- W4385326118 hasAuthorship W4385326118A5020466839 @default.
- W4385326118 hasAuthorship W4385326118A5034303466 @default.
- W4385326118 hasConcept C10138342 @default.
- W4385326118 hasConcept C112930515 @default.
- W4385326118 hasConcept C119857082 @default.
- W4385326118 hasConcept C144133560 @default.
- W4385326118 hasConcept C154945302 @default.
- W4385326118 hasConcept C162324750 @default.
- W4385326118 hasConcept C178350159 @default.
- W4385326118 hasConcept C187736073 @default.
- W4385326118 hasConcept C2775924081 @default.
- W4385326118 hasConcept C2780451532 @default.
- W4385326118 hasConcept C32896092 @default.
- W4385326118 hasConcept C41008148 @default.
- W4385326118 hasConceptScore W4385326118C10138342 @default.
- W4385326118 hasConceptScore W4385326118C112930515 @default.
- W4385326118 hasConceptScore W4385326118C119857082 @default.
- W4385326118 hasConceptScore W4385326118C144133560 @default.
- W4385326118 hasConceptScore W4385326118C154945302 @default.
- W4385326118 hasConceptScore W4385326118C162324750 @default.
- W4385326118 hasConceptScore W4385326118C178350159 @default.
- W4385326118 hasConceptScore W4385326118C187736073 @default.
- W4385326118 hasConceptScore W4385326118C2775924081 @default.
- W4385326118 hasConceptScore W4385326118C2780451532 @default.
- W4385326118 hasConceptScore W4385326118C32896092 @default.
- W4385326118 hasConceptScore W4385326118C41008148 @default.
- W4385326118 hasIssue "1" @default.
- W4385326118 hasLocation W43853261181 @default.
- W4385326118 hasOpenAccess W4385326118 @default.
- W4385326118 hasPrimaryLocation W43853261181 @default.
- W4385326118 hasRelatedWork W2364756659 @default.
- W4385326118 hasRelatedWork W2368171812 @default.
- W4385326118 hasRelatedWork W2378346047 @default.
- W4385326118 hasRelatedWork W2390319961 @default.
- W4385326118 hasRelatedWork W2791396891 @default.
- W4385326118 hasRelatedWork W2961085424 @default.
- W4385326118 hasRelatedWork W2978080308 @default.
- W4385326118 hasRelatedWork W4306674287 @default.
- W4385326118 hasRelatedWork W4312766322 @default.
- W4385326118 hasRelatedWork W585537610 @default.
- W4385326118 hasVolume "68" @default.
- W4385326118 isParatext "false" @default.
- W4385326118 isRetracted "false" @default.
- W4385326118 workType "article" @default.