Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385329458> ?p ?o ?g. }
- W4385329458 abstract "Sparse Mobile Crowdsensing is an emerging paradigm for data collection with budgets and workers' limitations' which recruits workers to sense a part of spatio-temporal data and infer what is unsensed. In order to achieve high inferring accuracy in all spatio-temporal areas, we need to measure the importance level of each area and sense some important ones. Existing works usually use the average distance or the difficulty level inferred by historical data to measure the area's importance. However, we argue that neither distance nor difficulty level is suitable for measuring the importance. A better approach is inspired by the data itself, i.e., data similarity among different areas. Furthermore, there usually exist multiple data types in sparse mobile crowdsensing, which leads to a more complex inference from two-dimensional data (spatial and temporal) to three-dimensional data (spatial, temporal, and data type). In this paper, we study worker recruitment in a multi-task scenario, which aims to recruit workers to sense important data for a three-dimensional inference. Specifically, we first present the SWDTW method to calculate data similarity, which is used to evaluate data importance. Based on this, we further propose an evaluation model for three-dimensional data similarity and measure the importance of each area. Finally, inspired by generalized greedy and simulated annealing, we propose a worker recruitment method named WRGSA, the target of which is selecting workers to sense important areas to enhance the inference accuracy. Extensive experiments have been conducted over three real-world datasets with multiple data types, which can verify the effectiveness of our proposed methods." @default.
- W4385329458 created "2023-07-29" @default.
- W4385329458 creator A5000650768 @default.
- W4385329458 creator A5002792842 @default.
- W4385329458 creator A5008181744 @default.
- W4385329458 creator A5017938877 @default.
- W4385329458 creator A5033953325 @default.
- W4385329458 creator A5045527959 @default.
- W4385329458 creator A5075983659 @default.
- W4385329458 date "2023-06-19" @default.
- W4385329458 modified "2023-10-16" @default.
- W4385329458 title "Data-Driven Similarity-based Worker Recruitment Towards Multi-task Data Inference for Sparse Mobile Crowdsensing" @default.
- W4385329458 cites W1550742363 @default.
- W4385329458 cites W1970931962 @default.
- W4385329458 cites W1984127772 @default.
- W4385329458 cites W2000285770 @default.
- W4385329458 cites W2008348094 @default.
- W4385329458 cites W2057041225 @default.
- W4385329458 cites W2074536033 @default.
- W4385329458 cites W2079329679 @default.
- W4385329458 cites W2098759488 @default.
- W4385329458 cites W2113786286 @default.
- W4385329458 cites W2125826911 @default.
- W4385329458 cites W2289648086 @default.
- W4385329458 cites W2473808492 @default.
- W4385329458 cites W2558570031 @default.
- W4385329458 cites W2565659696 @default.
- W4385329458 cites W2584274610 @default.
- W4385329458 cites W2740307401 @default.
- W4385329458 cites W2765580447 @default.
- W4385329458 cites W2789572951 @default.
- W4385329458 cites W2802962942 @default.
- W4385329458 cites W2949041559 @default.
- W4385329458 cites W2992607185 @default.
- W4385329458 cites W2996863123 @default.
- W4385329458 cites W2998503178 @default.
- W4385329458 cites W3089103520 @default.
- W4385329458 cites W3110669662 @default.
- W4385329458 cites W3154890711 @default.
- W4385329458 cites W3176609869 @default.
- W4385329458 cites W3182346119 @default.
- W4385329458 doi "https://doi.org/10.1109/iwqos57198.2023.10188803" @default.
- W4385329458 hasPublicationYear "2023" @default.
- W4385329458 type Work @default.
- W4385329458 citedByCount "0" @default.
- W4385329458 crossrefType "proceedings-article" @default.
- W4385329458 hasAuthorship W4385329458A5000650768 @default.
- W4385329458 hasAuthorship W4385329458A5002792842 @default.
- W4385329458 hasAuthorship W4385329458A5008181744 @default.
- W4385329458 hasAuthorship W4385329458A5017938877 @default.
- W4385329458 hasAuthorship W4385329458A5033953325 @default.
- W4385329458 hasAuthorship W4385329458A5045527959 @default.
- W4385329458 hasAuthorship W4385329458A5075983659 @default.
- W4385329458 hasConcept C103278499 @default.
- W4385329458 hasConcept C105795698 @default.
- W4385329458 hasConcept C115961682 @default.
- W4385329458 hasConcept C119857082 @default.
- W4385329458 hasConcept C124101348 @default.
- W4385329458 hasConcept C133462117 @default.
- W4385329458 hasConcept C138958017 @default.
- W4385329458 hasConcept C154945302 @default.
- W4385329458 hasConcept C162324750 @default.
- W4385329458 hasConcept C187736073 @default.
- W4385329458 hasConcept C199360897 @default.
- W4385329458 hasConcept C2522767166 @default.
- W4385329458 hasConcept C2776214188 @default.
- W4385329458 hasConcept C2776517306 @default.
- W4385329458 hasConcept C2780009758 @default.
- W4385329458 hasConcept C2780451532 @default.
- W4385329458 hasConcept C2780821482 @default.
- W4385329458 hasConcept C33923547 @default.
- W4385329458 hasConcept C41008148 @default.
- W4385329458 hasConceptScore W4385329458C103278499 @default.
- W4385329458 hasConceptScore W4385329458C105795698 @default.
- W4385329458 hasConceptScore W4385329458C115961682 @default.
- W4385329458 hasConceptScore W4385329458C119857082 @default.
- W4385329458 hasConceptScore W4385329458C124101348 @default.
- W4385329458 hasConceptScore W4385329458C133462117 @default.
- W4385329458 hasConceptScore W4385329458C138958017 @default.
- W4385329458 hasConceptScore W4385329458C154945302 @default.
- W4385329458 hasConceptScore W4385329458C162324750 @default.
- W4385329458 hasConceptScore W4385329458C187736073 @default.
- W4385329458 hasConceptScore W4385329458C199360897 @default.
- W4385329458 hasConceptScore W4385329458C2522767166 @default.
- W4385329458 hasConceptScore W4385329458C2776214188 @default.
- W4385329458 hasConceptScore W4385329458C2776517306 @default.
- W4385329458 hasConceptScore W4385329458C2780009758 @default.
- W4385329458 hasConceptScore W4385329458C2780451532 @default.
- W4385329458 hasConceptScore W4385329458C2780821482 @default.
- W4385329458 hasConceptScore W4385329458C33923547 @default.
- W4385329458 hasConceptScore W4385329458C41008148 @default.
- W4385329458 hasFunder F4320321001 @default.
- W4385329458 hasFunder F4320335777 @default.
- W4385329458 hasLocation W43853294581 @default.
- W4385329458 hasOpenAccess W4385329458 @default.
- W4385329458 hasPrimaryLocation W43853294581 @default.
- W4385329458 hasRelatedWork W121350374 @default.
- W4385329458 hasRelatedWork W1992371859 @default.
- W4385329458 hasRelatedWork W2111173507 @default.
- W4385329458 hasRelatedWork W2135077600 @default.