Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385329900> ?p ?o ?g. }
- W4385329900 endingPage "63" @default.
- W4385329900 startingPage "53" @default.
- W4385329900 abstract "The critical barrier for clinical translation of cancer nanomedicine stems from the inefficient delivery of nanoparticles (NPs) to target solid tumors. Rapid growth of computational power, new machine learning and artificial intelligence (AI) approaches provide new tools to address this challenge. In this study, we established an AI-assisted physiologically based pharmacokinetic (PBPK) model by integrating an AI-based quantitative structure-activity relationship (QSAR) model with a PBPK model to simulate tumor-targeted delivery efficiency (DE) and biodistribution of various NPs. The AI-based QSAR model was developed using machine learning and deep neural network algorithms that were trained with datasets from a published “Nano-Tumor Database” to predict critical input parameters of the PBPK model. The PBPK model with optimized NP cellular uptake kinetic parameters was used to predict the maximum delivery efficiency (DEmax) and DE at 24 (DE24) and 168 h (DE168) of different NPs in the tumor after intravenous injection and achieved a determination coefficient of R2 = 0.83 [root mean squared error (RMSE) = 3.01] for DE24, R2 = 0.56 (RMSE = 2.27) for DE168, and R2 = 0.82 (RMSE = 3.51) for DEmax. The AI-PBPK model predictions correlated well with available experimentally-measured pharmacokinetic profiles of different NPs in tumors after intravenous injection (R2 ≥ 0.70 for 133 out of 288 datasets). This AI-based PBPK model provides an efficient screening tool to rapidly predict delivery efficiency of a NP based on its physicochemical properties without relying on an animal training dataset." @default.
- W4385329900 created "2023-07-29" @default.
- W4385329900 creator A5010469020 @default.
- W4385329900 creator A5026895542 @default.
- W4385329900 creator A5027764628 @default.
- W4385329900 creator A5038299644 @default.
- W4385329900 creator A5042689320 @default.
- W4385329900 creator A5049879984 @default.
- W4385329900 creator A5051067242 @default.
- W4385329900 creator A5061095526 @default.
- W4385329900 date "2023-09-01" @default.
- W4385329900 modified "2023-10-17" @default.
- W4385329900 title "An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice" @default.
- W4385329900 cites W1838811589 @default.
- W4385329900 cites W1980671054 @default.
- W4385329900 cites W1982089656 @default.
- W4385329900 cites W1989195046 @default.
- W4385329900 cites W1994881394 @default.
- W4385329900 cites W2002645541 @default.
- W4385329900 cites W2013838566 @default.
- W4385329900 cites W2020327600 @default.
- W4385329900 cites W2024451301 @default.
- W4385329900 cites W2031560835 @default.
- W4385329900 cites W2032760352 @default.
- W4385329900 cites W2038282755 @default.
- W4385329900 cites W2044280865 @default.
- W4385329900 cites W2054547205 @default.
- W4385329900 cites W2056274861 @default.
- W4385329900 cites W2083710155 @default.
- W4385329900 cites W2112966923 @default.
- W4385329900 cites W2146205672 @default.
- W4385329900 cites W2147171518 @default.
- W4385329900 cites W2157016784 @default.
- W4385329900 cites W2164074473 @default.
- W4385329900 cites W2169187623 @default.
- W4385329900 cites W2192643764 @default.
- W4385329900 cites W2266913154 @default.
- W4385329900 cites W2323147899 @default.
- W4385329900 cites W2339713225 @default.
- W4385329900 cites W2344644350 @default.
- W4385329900 cites W2509704930 @default.
- W4385329900 cites W2553276534 @default.
- W4385329900 cites W2582187633 @default.
- W4385329900 cites W2605820874 @default.
- W4385329900 cites W2796781998 @default.
- W4385329900 cites W2891338921 @default.
- W4385329900 cites W2970329262 @default.
- W4385329900 cites W2973049920 @default.
- W4385329900 cites W2974386912 @default.
- W4385329900 cites W3002148234 @default.
- W4385329900 cites W3006987776 @default.
- W4385329900 cites W3030834496 @default.
- W4385329900 cites W3083698728 @default.
- W4385329900 cites W3112240879 @default.
- W4385329900 cites W3159514218 @default.
- W4385329900 cites W3211668464 @default.
- W4385329900 cites W4206028708 @default.
- W4385329900 cites W4220780921 @default.
- W4385329900 cites W4223546410 @default.
- W4385329900 cites W4226061388 @default.
- W4385329900 cites W4281710911 @default.
- W4385329900 cites W4284882999 @default.
- W4385329900 cites W4286111163 @default.
- W4385329900 cites W4293331726 @default.
- W4385329900 cites W4297252253 @default.
- W4385329900 cites W4311542365 @default.
- W4385329900 cites W4313909320 @default.
- W4385329900 cites W4317213381 @default.
- W4385329900 cites W4319321475 @default.
- W4385329900 doi "https://doi.org/10.1016/j.jconrel.2023.07.040" @default.
- W4385329900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37499908" @default.
- W4385329900 hasPublicationYear "2023" @default.
- W4385329900 type Work @default.
- W4385329900 citedByCount "2" @default.
- W4385329900 crossrefType "journal-article" @default.
- W4385329900 hasAuthorship W4385329900A5010469020 @default.
- W4385329900 hasAuthorship W4385329900A5026895542 @default.
- W4385329900 hasAuthorship W4385329900A5027764628 @default.
- W4385329900 hasAuthorship W4385329900A5038299644 @default.
- W4385329900 hasAuthorship W4385329900A5042689320 @default.
- W4385329900 hasAuthorship W4385329900A5049879984 @default.
- W4385329900 hasAuthorship W4385329900A5051067242 @default.
- W4385329900 hasAuthorship W4385329900A5061095526 @default.
- W4385329900 hasBestOaLocation W43853299001 @default.
- W4385329900 hasConcept C105795698 @default.
- W4385329900 hasConcept C112705442 @default.
- W4385329900 hasConcept C119857082 @default.
- W4385329900 hasConcept C139945424 @default.
- W4385329900 hasConcept C15083742 @default.
- W4385329900 hasConcept C154945302 @default.
- W4385329900 hasConcept C155672457 @default.
- W4385329900 hasConcept C164126121 @default.
- W4385329900 hasConcept C171250308 @default.
- W4385329900 hasConcept C185592680 @default.
- W4385329900 hasConcept C185867374 @default.
- W4385329900 hasConcept C192562407 @default.
- W4385329900 hasConcept C202751555 @default.
- W4385329900 hasConcept C2777807558 @default.