Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385331333> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4385331333 abstract "HomeRadiology: Imaging CancerVol. 5, No. 4 PreviousNext CommentaryOne Size Fits All?—Not Anymore: Personalizing Breast Cancer Treatment with Use of a Semiautomated Functional Tumor Volume–based Predictive Model in the Assessment of Neoadjuvant Therapy ResponseShruthi Ram Shruthi Ram Author AffiliationsFrom the Department of Diagnostic Imaging, Rochester General Hospital, 1425 Portland Ave, Rochester, NY 14621.Address correspondence to the author (email: [email protected]).Shruthi Ram Published Online:Jul 28 2023https://doi.org/10.1148/rycan.230089MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. Reig B, Lewin AA, Du L, et al. Breast MRI for Evaluation of Response to Neoadjuvant Therapy. RadioGraphics 2021;41(3):665–679. Link, Google Scholar2. Fukuda T, Horii R, Gomi N, et al. Accuracy of magnetic resonance imaging for predicting pathological complete response of breast cancer after neoadjuvant chemotherapy: association with breast cancer subtype. Springerplus 2016;5(1):152. Crossref, Medline, Google Scholar3. Hylton NM, Blume JD, Bernreuter WK, et al; ACRIN 6657 Trial Team and I-SPY 1 TRIAL Investigators. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I-SPY TRIAL. Radiology 2012;263(3):663–672. Link, Google Scholar4. Onishi N, Bareng TJ, Gibbs J, et al. Effect of longitudinal variation in tumor volume estimation for MRI-guided personalization of breast cancer neoadjuvant treatment. Radiol Imaging Cancer 2023;5(4):e220126. Google Scholar5. Musall BC, Abdelhafez AH, Adrada BE, et al. Functional Tumor Volume by Fast Dynamic Contrast-Enhanced MRI for Predicting Neoadjuvant Systemic Therapy Response in Triple-Negative Breast Cancer. J Magn Reson Imaging 2021;54(1):251–260. Crossref, Medline, Google Scholar6. Panthi B, Adrada BE, Candelaria RP, et al. Assessment of Response to Neoadjuvant Systemic Treatment in Triple-Negative Breast Cancer Using Functional Tumor Volumes from Longitudinal Dynamic Contrast-Enhanced MRI. Cancers (Basel) 2023;15(4):1025. Crossref, Medline, Google Scholar7. Pesapane F, De Marco P, Rapino A, et al. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023;12(4):1372. Crossref, Medline, Google Scholar8. Parikh J, Selmi M, Charles-Edwards G, et al. Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy. Radiology 2014;272(1):100–112. Link, Google Scholar9. Musall BC, Adrada BE, Candelaria RP, et al. Quantitative Apparent Diffusion Coefficients From Peritumoral Regions as Early Predictors of Response to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer. J Magn Reson Imaging 2022;56(6):1901–1909. Crossref, Medline, Google Scholar10. Abdelhafez AH, Musall BC, Adrada BE, et al. Tumor necrosis by pretreatment breast MRI: association with neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). Breast Cancer Res Treat 2021;185(1):1–12. Crossref, Medline, Google ScholarArticle HistoryReceived: June 11 2023Revision requested: June 11 2023Revision received: June 27 2023Accepted: July 6 2023Published online: July 28 2023 FiguresReferencesRelatedDetailsAccompanying This ArticleEffect of Longitudinal Variation in Tumor Volume Estimation for MRI-guided Personalization of Breast Cancer Neoadjuvant TreatmentJul 28 2023Radiology: Imaging CancerRecommended Articles Imaging Neoadjuvant Therapy Response in Breast CancerRadiology2017Volume: 285Issue: 2pp. 358-375Background Parenchymal Enhancement at Postoperative Surveillance Breast MRI: Association with Future Second Breast Cancer RiskRadiology2022Volume: 306Issue: 1pp. 90-99Intratumoral Spatial Heterogeneity at Perfusion MR Imaging Predicts Recurrence-free Survival in Locally Advanced Breast Cancer Treated with Neoadjuvant ChemotherapyRadiology2018Volume: 288Issue: 1pp. 26-35Precision Medicine and Radiogenomics in Breast Cancer: New Approaches toward Diagnosis and TreatmentRadiology2018Volume: 287Issue: 3pp. 732-747Using Synthetic MRI and Radiomics to Predict Treatment Response in Triple-Negative Breast CancerRadiology: Imaging Cancer2023Volume: 5Issue: 4See More RSNA Education Exhibits How to Navigate Breast Tumor Board: A Resident and Fellow PrimerDigital Posters2022Staging Breast Cancer: A Case Based ReviewDigital Posters20222022 New Trends in Breast Density - What Should We Know?Digital Posters2022 RSNA Case Collection Inflammatory breast cancerRSNA Case Collection2020Inflammatory breast cancerRSNA Case Collection2020Multifocal breast cancerRSNA Case Collection2020 Vol. 5, No. 4 Metrics Altmetric Score PDF download" @default.
- W4385331333 created "2023-07-29" @default.
- W4385331333 creator A5022221301 @default.
- W4385331333 date "2023-07-01" @default.
- W4385331333 modified "2023-10-18" @default.
- W4385331333 title "One Size Fits All?—Not Anymore: Personalizing Breast Cancer Treatment with Use of a Semiautomated Functional Tumor Volume–based Predictive Model in the Assessment of Neoadjuvant Therapy Response" @default.
- W4385331333 cites W2038833688 @default.
- W4385331333 cites W2133765759 @default.
- W4385331333 cites W2285090712 @default.
- W4385331333 cites W3084808787 @default.
- W4385331333 cites W3131583229 @default.
- W4385331333 cites W3157085679 @default.
- W4385331333 cites W4225272079 @default.
- W4385331333 cites W4319298455 @default.
- W4385331333 cites W4319754535 @default.
- W4385331333 cites W4385330543 @default.
- W4385331333 doi "https://doi.org/10.1148/rycan.230089" @default.
- W4385331333 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37505103" @default.
- W4385331333 hasPublicationYear "2023" @default.
- W4385331333 type Work @default.
- W4385331333 citedByCount "0" @default.
- W4385331333 crossrefType "journal-article" @default.
- W4385331333 hasAuthorship W4385331333A5022221301 @default.
- W4385331333 hasBestOaLocation W43853313331 @default.
- W4385331333 hasConcept C121608353 @default.
- W4385331333 hasConcept C126322002 @default.
- W4385331333 hasConcept C126838900 @default.
- W4385331333 hasConcept C143409427 @default.
- W4385331333 hasConcept C143998085 @default.
- W4385331333 hasConcept C2778292576 @default.
- W4385331333 hasConcept C2780110267 @default.
- W4385331333 hasConcept C530470458 @default.
- W4385331333 hasConcept C71924100 @default.
- W4385331333 hasConceptScore W4385331333C121608353 @default.
- W4385331333 hasConceptScore W4385331333C126322002 @default.
- W4385331333 hasConceptScore W4385331333C126838900 @default.
- W4385331333 hasConceptScore W4385331333C143409427 @default.
- W4385331333 hasConceptScore W4385331333C143998085 @default.
- W4385331333 hasConceptScore W4385331333C2778292576 @default.
- W4385331333 hasConceptScore W4385331333C2780110267 @default.
- W4385331333 hasConceptScore W4385331333C530470458 @default.
- W4385331333 hasConceptScore W4385331333C71924100 @default.
- W4385331333 hasIssue "4" @default.
- W4385331333 hasLocation W43853313331 @default.
- W4385331333 hasLocation W43853313332 @default.
- W4385331333 hasOpenAccess W4385331333 @default.
- W4385331333 hasPrimaryLocation W43853313331 @default.
- W4385331333 hasRelatedWork W1999292713 @default.
- W4385331333 hasRelatedWork W2139975046 @default.
- W4385331333 hasRelatedWork W2263577673 @default.
- W4385331333 hasRelatedWork W2317787856 @default.
- W4385331333 hasRelatedWork W2331329572 @default.
- W4385331333 hasRelatedWork W2338954311 @default.
- W4385331333 hasRelatedWork W2376078656 @default.
- W4385331333 hasRelatedWork W2554176272 @default.
- W4385331333 hasRelatedWork W2926354809 @default.
- W4385331333 hasRelatedWork W3044626609 @default.
- W4385331333 hasVolume "5" @default.
- W4385331333 isParatext "false" @default.
- W4385331333 isRetracted "false" @default.
- W4385331333 workType "article" @default.