Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385335904> ?p ?o ?g. }
- W4385335904 endingPage "115722" @default.
- W4385335904 startingPage "115722" @default.
- W4385335904 abstract "As discontinuities of the smooth icy surface, linear surface features might be directly or indirectly linked to Europa’s subsurface ocean. Mapping and categorising Europa’s lineaments is a means of retrieving information that could be linked to their formation history. As of today, planetary mapping is mainly conducted manually, which is tedious and subject to human bias once data sets become large. Mapping is further complicated by the heterogeneous quality and coverage of the available image data. Here, we train LineaMapper, a convolutional neural network (Mask R-CNN), to conduct instance segmentation of the four main units of linear surface features on Europa: bands, double ridges, ridge complexes and undifferentiated lineae. LineaMapper is trained on the basis of 15 mosaics from the Galileo solid-state imager data, yielding 930 training tiles. With LineaMapper, we provide a new method for lineament mapping that facilitates detailed mapping of lineaments in Galileo images and that could be applied to data to be returned by the Europa Imaging System (EIS) onboard the Europa Clipper mission. We validate LineaMapper v1.0 on an independent test set. On this test set, LineaMapper shows an overall higher precision than recall. In other words, there are more non-detections of actual lineaments than there are false detections of lineaments. The model shows the most correct predictions for double ridges (highest precision), while the most complete detections happen for ridge complexes (highest recall), compared with the ground truth. In some cases, LineaMapper preserves the cross-cutting relationships. The biggest strength of LineaMapper lies in its speed and tunable output. In the future, LineaMapper can be retrained, fine tuned and applied to similar looking features, for example wrinkle ridges on Venus, ridges on other planets and moons or even dust devil tracks on Mars." @default.
- W4385335904 created "2023-07-29" @default.
- W4385335904 creator A5006986253 @default.
- W4385335904 creator A5020239946 @default.
- W4385335904 creator A5086198199 @default.
- W4385335904 date "2023-07-01" @default.
- W4385335904 modified "2023-09-27" @default.
- W4385335904 title "LineaMapper: A deep learning-powered tool for mapping linear surface features on Europa" @default.
- W4385335904 cites W1488772222 @default.
- W4385335904 cites W1554441967 @default.
- W4385335904 cites W1640849165 @default.
- W4385335904 cites W1965956744 @default.
- W4385335904 cites W1972515060 @default.
- W4385335904 cites W1982591868 @default.
- W4385335904 cites W1991073824 @default.
- W4385335904 cites W1991528733 @default.
- W4385335904 cites W1992531273 @default.
- W4385335904 cites W2004186171 @default.
- W4385335904 cites W2006063676 @default.
- W4385335904 cites W2008838401 @default.
- W4385335904 cites W2015984542 @default.
- W4385335904 cites W2020133832 @default.
- W4385335904 cites W2024934777 @default.
- W4385335904 cites W2026131180 @default.
- W4385335904 cites W2035744698 @default.
- W4385335904 cites W2041248293 @default.
- W4385335904 cites W2045003606 @default.
- W4385335904 cites W2046506163 @default.
- W4385335904 cites W2048306997 @default.
- W4385335904 cites W2067129492 @default.
- W4385335904 cites W2067143968 @default.
- W4385335904 cites W2069265832 @default.
- W4385335904 cites W2072808331 @default.
- W4385335904 cites W2074442240 @default.
- W4385335904 cites W2095905764 @default.
- W4385335904 cites W2099001231 @default.
- W4385335904 cites W2117234027 @default.
- W4385335904 cites W2125931388 @default.
- W4385335904 cites W2128995651 @default.
- W4385335904 cites W2133948550 @default.
- W4385335904 cites W2139362768 @default.
- W4385335904 cites W2143309378 @default.
- W4385335904 cites W2156202286 @default.
- W4385335904 cites W2160942393 @default.
- W4385335904 cites W2161983255 @default.
- W4385335904 cites W2168976009 @default.
- W4385335904 cites W2291659939 @default.
- W4385335904 cites W2561915854 @default.
- W4385335904 cites W2776787211 @default.
- W4385335904 cites W2801649487 @default.
- W4385335904 cites W2906590007 @default.
- W4385335904 cites W2924220468 @default.
- W4385335904 cites W2981139380 @default.
- W4385335904 cites W3014171684 @default.
- W4385335904 cites W3033356973 @default.
- W4385335904 cites W3033437085 @default.
- W4385335904 cites W3110482695 @default.
- W4385335904 cites W3122971916 @default.
- W4385335904 cites W3211214872 @default.
- W4385335904 cites W4224267695 @default.
- W4385335904 cites W4306311563 @default.
- W4385335904 cites W4308477559 @default.
- W4385335904 cites W4310015957 @default.
- W4385335904 cites W4376606468 @default.
- W4385335904 doi "https://doi.org/10.1016/j.icarus.2023.115722" @default.
- W4385335904 hasPublicationYear "2023" @default.
- W4385335904 type Work @default.
- W4385335904 citedByCount "0" @default.
- W4385335904 crossrefType "journal-article" @default.
- W4385335904 hasAuthorship W4385335904A5006986253 @default.
- W4385335904 hasAuthorship W4385335904A5020239946 @default.
- W4385335904 hasAuthorship W4385335904A5086198199 @default.
- W4385335904 hasBestOaLocation W43853359041 @default.
- W4385335904 hasConcept C108583219 @default.
- W4385335904 hasConcept C127313418 @default.
- W4385335904 hasConcept C134306372 @default.
- W4385335904 hasConcept C146849305 @default.
- W4385335904 hasConcept C151730666 @default.
- W4385335904 hasConcept C154945302 @default.
- W4385335904 hasConcept C15627037 @default.
- W4385335904 hasConcept C165205528 @default.
- W4385335904 hasConcept C169903167 @default.
- W4385335904 hasConcept C31972630 @default.
- W4385335904 hasConcept C32277403 @default.
- W4385335904 hasConcept C33923547 @default.
- W4385335904 hasConcept C41008148 @default.
- W4385335904 hasConcept C58489278 @default.
- W4385335904 hasConcept C62649853 @default.
- W4385335904 hasConcept C77928131 @default.
- W4385335904 hasConcept C81363708 @default.
- W4385335904 hasConcept C81669768 @default.
- W4385335904 hasConcept C89600930 @default.
- W4385335904 hasConcept C92596616 @default.
- W4385335904 hasConceptScore W4385335904C108583219 @default.
- W4385335904 hasConceptScore W4385335904C127313418 @default.
- W4385335904 hasConceptScore W4385335904C134306372 @default.
- W4385335904 hasConceptScore W4385335904C146849305 @default.
- W4385335904 hasConceptScore W4385335904C151730666 @default.