Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385335906> ?p ?o ?g. }
- W4385335906 endingPage "115378" @default.
- W4385335906 startingPage "115378" @default.
- W4385335906 abstract "Treatment-resistant depression (TRD) represents a severe clinical condition with high social and economic costs. Esketamine Nasal Spray (ESK-NS) has recently been approved for TRD by EMA and FDA, but data about predictors of response are still lacking. Thus, a tool that can predict the individual patients' probability of response to ESK-NS is needed. This study investigates sociodemographic and clinical features predicting responses to ESK-NS in TRD patients using machine learning techniques. In a retrospective, multicentric, real-world study involving 149 TRD subjects, psychometric data (Montgomery-Asberg-Depression-Rating-Scale/MADRS, Brief-Psychiatric-Rating-Scale/BPRS, Hamilton-Anxiety-Rating-Scale/HAM-A, Hamilton-Depression-Rating-Scale/HAMD-17) were collected at baseline and at one month/T1 and three months/T2 post-treatment initiation. We trained three different random forest classifiers, able to predict responses to ESK-NS with accuracies of 68.53% at T1 and 66.26% at T2 and remission at T2 with 68.60% of accuracy. Features like severe anhedonia, anxious distress, mixed symptoms as well as bipolarity were found to positively predict response and remission. At the same time, benzodiazepine usage and depression severity were linked to delayed responses. Despite some limitations (i.e., retrospective study, lack of biomarkers, lack of a correct interrater-reliability across the different centers), these findings suggest the potential of machine learning in personalized intervention for TRD." @default.
- W4385335906 created "2023-07-29" @default.
- W4385335906 creator A5007109732 @default.
- W4385335906 creator A5009324756 @default.
- W4385335906 creator A5012959304 @default.
- W4385335906 creator A5017240100 @default.
- W4385335906 creator A5020986794 @default.
- W4385335906 creator A5027800542 @default.
- W4385335906 creator A5030480720 @default.
- W4385335906 creator A5033271906 @default.
- W4385335906 creator A5036734827 @default.
- W4385335906 creator A5038390777 @default.
- W4385335906 creator A5041705984 @default.
- W4385335906 creator A5041985851 @default.
- W4385335906 creator A5046453645 @default.
- W4385335906 creator A5047133989 @default.
- W4385335906 creator A5048289354 @default.
- W4385335906 creator A5050740394 @default.
- W4385335906 creator A5053114363 @default.
- W4385335906 creator A5055020200 @default.
- W4385335906 creator A5055374411 @default.
- W4385335906 creator A5058319971 @default.
- W4385335906 creator A5060759005 @default.
- W4385335906 creator A5063212886 @default.
- W4385335906 creator A5069009864 @default.
- W4385335906 creator A5069687057 @default.
- W4385335906 creator A5070312407 @default.
- W4385335906 creator A5076048806 @default.
- W4385335906 creator A5080214769 @default.
- W4385335906 creator A5084245539 @default.
- W4385335906 date "2023-09-01" @default.
- W4385335906 modified "2023-10-18" @default.
- W4385335906 title "Predicting outcome with Intranasal Esketamine treatment: A machine-learning, three-month study in Treatment-Resistant Depression (ESK-LEARNING)" @default.
- W4385335906 cites W1976447964 @default.
- W4385335906 cites W2005846380 @default.
- W4385335906 cites W2010374860 @default.
- W4385335906 cites W2026832357 @default.
- W4385335906 cites W2032149427 @default.
- W4385335906 cites W2055862036 @default.
- W4385335906 cites W2090424138 @default.
- W4385335906 cites W2101540672 @default.
- W4385335906 cites W2113067674 @default.
- W4385335906 cites W2114613490 @default.
- W4385335906 cites W2118978333 @default.
- W4385335906 cites W2131823335 @default.
- W4385335906 cites W2160070901 @default.
- W4385335906 cites W2323745664 @default.
- W4385335906 cites W2556029587 @default.
- W4385335906 cites W2610643215 @default.
- W4385335906 cites W2779386549 @default.
- W4385335906 cites W2781576385 @default.
- W4385335906 cites W2802678418 @default.
- W4385335906 cites W2804362986 @default.
- W4385335906 cites W2804598038 @default.
- W4385335906 cites W2809286458 @default.
- W4385335906 cites W2811304329 @default.
- W4385335906 cites W2885069035 @default.
- W4385335906 cites W2911964244 @default.
- W4385335906 cites W2937452922 @default.
- W4385335906 cites W2946661342 @default.
- W4385335906 cites W2960566636 @default.
- W4385335906 cites W2961020354 @default.
- W4385335906 cites W2963389298 @default.
- W4385335906 cites W2968647719 @default.
- W4385335906 cites W2996818987 @default.
- W4385335906 cites W3005582604 @default.
- W4385335906 cites W3025658495 @default.
- W4385335906 cites W3025865311 @default.
- W4385335906 cites W3036580760 @default.
- W4385335906 cites W3038241450 @default.
- W4385335906 cites W3046958114 @default.
- W4385335906 cites W3086459126 @default.
- W4385335906 cites W3087001700 @default.
- W4385335906 cites W3087368824 @default.
- W4385335906 cites W3088001093 @default.
- W4385335906 cites W3103145119 @default.
- W4385335906 cites W3109964933 @default.
- W4385335906 cites W3113274176 @default.
- W4385335906 cites W3118632534 @default.
- W4385335906 cites W3120269913 @default.
- W4385335906 cites W3122633272 @default.
- W4385335906 cites W3137976016 @default.
- W4385335906 cites W3146268156 @default.
- W4385335906 cites W3158396866 @default.
- W4385335906 cites W3178067180 @default.
- W4385335906 cites W3178494086 @default.
- W4385335906 cites W3195280865 @default.
- W4385335906 cites W3198693176 @default.
- W4385335906 cites W3207397300 @default.
- W4385335906 cites W3215186461 @default.
- W4385335906 cites W4200627112 @default.
- W4385335906 cites W4205762364 @default.
- W4385335906 cites W4213037518 @default.
- W4385335906 cites W4220922409 @default.
- W4385335906 cites W4220931217 @default.
- W4385335906 cites W4223923854 @default.
- W4385335906 cites W4225319089 @default.
- W4385335906 cites W4294808278 @default.