Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385335971> ?p ?o ?g. }
- W4385335971 endingPage "107307" @default.
- W4385335971 startingPage "107307" @default.
- W4385335971 abstract "Mutation testing is a powerful method used in software testing for various activities, such as guidance for test case generation and test suite quality assessment. However, a vast number of mutants, most unrelated to real faults, threaten the scalability and validity of the method. Over the decades, researchers have proposed various approaches to alleviate these problems, most of which have almost the same performance in practice. To overcome this issue, recently predicting a category of mutants named fault-revealing mutants has been proposed, which outperforms other methods in terms of real-fault revelation ability. Although recent research shows the usefulness of targeting this type of mutant, they are scarce, which makes predictions of them with higher accuracy challenging. This paper aims to propose a method that can predict fault-revealing mutants with higher accuracy compared to the state-of-the-art method. To tackle this challenge, a feature representing the difficulty of killing a mutant is added as a new feature to complement the state-of-the-art feature set. Then a method based on ensemble learning is proposed that uses this feature for fault-revealing mutants’ prediction. According to our experimental results, the proposed method outperforms the state-of-the-art method regarding area under a receiver operating characteristic curve (AUC) value on the Codeflaws and CoRBench data sets by 7.09% and 8.97%, respectively. It is concluded that the proposed method, which includes a new feature and an ensemble-learning approach, enhances the accuracy of predicting fault-revealing mutants in software testing. This is achieved by incorporating the difficulty of killing a mutant as a feature, which complements the existing feature set used in state-of-the-art methods. The experimental results demonstrate that the proposed method outperforms the state-of-the-art method on two datasets, Codeflaws and CoRBench, indicating that it has the potential to be applied in practical software testing scenarios." @default.
- W4385335971 created "2023-07-29" @default.
- W4385335971 creator A5044155582 @default.
- W4385335971 creator A5089793027 @default.
- W4385335971 date "2023-12-01" @default.
- W4385335971 modified "2023-09-26" @default.
- W4385335971 title "FrMi: Fault-revealing Mutant Identification using killability severity" @default.
- W4385335971 cites W2051725175 @default.
- W4385335971 cites W2070493638 @default.
- W4385335971 cites W2075592454 @default.
- W4385335971 cites W2076063813 @default.
- W4385335971 cites W2121084350 @default.
- W4385335971 cites W2158698691 @default.
- W4385335971 cites W2364289112 @default.
- W4385335971 cites W2394841101 @default.
- W4385335971 cites W2600669551 @default.
- W4385335971 cites W2616524285 @default.
- W4385335971 cites W2725449579 @default.
- W4385335971 cites W2787216049 @default.
- W4385335971 cites W2788962378 @default.
- W4385335971 cites W2790730965 @default.
- W4385335971 cites W2793776506 @default.
- W4385335971 cites W2806676720 @default.
- W4385335971 cites W2810436977 @default.
- W4385335971 cites W2900715909 @default.
- W4385335971 cites W2944109720 @default.
- W4385335971 cites W2952322169 @default.
- W4385335971 cites W2962975379 @default.
- W4385335971 cites W2963161254 @default.
- W4385335971 cites W2965110092 @default.
- W4385335971 cites W2974490807 @default.
- W4385335971 cites W2979792666 @default.
- W4385335971 cites W2987525843 @default.
- W4385335971 cites W2995454814 @default.
- W4385335971 cites W2998024052 @default.
- W4385335971 cites W3006337474 @default.
- W4385335971 cites W3045296135 @default.
- W4385335971 cites W3119014038 @default.
- W4385335971 cites W3153266893 @default.
- W4385335971 cites W3166585820 @default.
- W4385335971 cites W3171059905 @default.
- W4385335971 cites W3195156628 @default.
- W4385335971 cites W3202940505 @default.
- W4385335971 cites W3216660278 @default.
- W4385335971 cites W4226337124 @default.
- W4385335971 cites W4238681179 @default.
- W4385335971 cites W4282593910 @default.
- W4385335971 cites W4284690247 @default.
- W4385335971 doi "https://doi.org/10.1016/j.infsof.2023.107307" @default.
- W4385335971 hasPublicationYear "2023" @default.
- W4385335971 type Work @default.
- W4385335971 citedByCount "0" @default.
- W4385335971 crossrefType "journal-article" @default.
- W4385335971 hasAuthorship W4385335971A5044155582 @default.
- W4385335971 hasAuthorship W4385335971A5089793027 @default.
- W4385335971 hasConcept C111919701 @default.
- W4385335971 hasConcept C119857082 @default.
- W4385335971 hasConcept C124101348 @default.
- W4385335971 hasConcept C138885662 @default.
- W4385335971 hasConcept C151730666 @default.
- W4385335971 hasConcept C154945302 @default.
- W4385335971 hasConcept C175551986 @default.
- W4385335971 hasConcept C2776401178 @default.
- W4385335971 hasConcept C41008148 @default.
- W4385335971 hasConcept C41895202 @default.
- W4385335971 hasConcept C48044578 @default.
- W4385335971 hasConcept C77088390 @default.
- W4385335971 hasConcept C86803240 @default.
- W4385335971 hasConcept C98045186 @default.
- W4385335971 hasConceptScore W4385335971C111919701 @default.
- W4385335971 hasConceptScore W4385335971C119857082 @default.
- W4385335971 hasConceptScore W4385335971C124101348 @default.
- W4385335971 hasConceptScore W4385335971C138885662 @default.
- W4385335971 hasConceptScore W4385335971C151730666 @default.
- W4385335971 hasConceptScore W4385335971C154945302 @default.
- W4385335971 hasConceptScore W4385335971C175551986 @default.
- W4385335971 hasConceptScore W4385335971C2776401178 @default.
- W4385335971 hasConceptScore W4385335971C41008148 @default.
- W4385335971 hasConceptScore W4385335971C41895202 @default.
- W4385335971 hasConceptScore W4385335971C48044578 @default.
- W4385335971 hasConceptScore W4385335971C77088390 @default.
- W4385335971 hasConceptScore W4385335971C86803240 @default.
- W4385335971 hasConceptScore W4385335971C98045186 @default.
- W4385335971 hasLocation W43853359711 @default.
- W4385335971 hasOpenAccess W4385335971 @default.
- W4385335971 hasPrimaryLocation W43853359711 @default.
- W4385335971 hasRelatedWork W1525643724 @default.
- W4385335971 hasRelatedWork W2067938758 @default.
- W4385335971 hasRelatedWork W2302028273 @default.
- W4385335971 hasRelatedWork W2333420780 @default.
- W4385335971 hasRelatedWork W2364921833 @default.
- W4385335971 hasRelatedWork W2375199418 @default.
- W4385335971 hasRelatedWork W2382623646 @default.
- W4385335971 hasRelatedWork W2961085424 @default.
- W4385335971 hasRelatedWork W3087771547 @default.
- W4385335971 hasRelatedWork W4306674287 @default.
- W4385335971 hasVolume "164" @default.
- W4385335971 isParatext "false" @default.