Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385336211> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4385336211 endingPage "102231" @default.
- W4385336211 startingPage "102231" @default.
- W4385336211 abstract "Wildlife camera trap images are being used extensively to investigate animal abundance, habitat associations, and behavior, which is complicated by the fact that experts must first classify the images to retrieve relevant information. Artificial intelligence systems can take over this task but usually need a large number of already-labeled training images to achieve sufficient performance. This requirement necessitates human expert labor and poses a particular challenge for projects with few cameras or short durations. We propose a label-efficient learning strategy that enables researchers with small or medium-sized image databases to leverage the potential of modern machine learning, thus freeing crucial resources for subsequent analyses. Our methodological proposal is twofold: On the one hand, we improve current strategies of combining object detection and image classification by tuning the hyperparameters of both models. On the other hand, we provide an active learning system that allows training deep learning models very efficiently in terms of required manually labeled training images. We supply a software package that enables researchers to use these methods without specific programming skills and thereby ensure the broad applicability of the proposed framework in ecological practice. We show that our tuning strategy improves predictive performance, emphasizing that tuning can and must be done separately for a new data set. We demonstrate how the active learning pipeline reduces the amount of pre-labeled data needed to achieve specific predictive performance and that it is especially valuable for improving out-of-sample predictive performance. We conclude that the combination of tuning and active learning increases the predictive performance of automated image classifiers substantially. Furthermore, we argue that our work can broadly impact the community through the ready-to-use software package provided. Finally, the publication of our models tailored to European wildlife data enriches existing model bases mostly trained on data from Africa and North America." @default.
- W4385336211 created "2023-07-29" @default.
- W4385336211 creator A5002861503 @default.
- W4385336211 creator A5006463578 @default.
- W4385336211 creator A5009013618 @default.
- W4385336211 creator A5020570041 @default.
- W4385336211 creator A5038202532 @default.
- W4385336211 creator A5057239560 @default.
- W4385336211 creator A5084865676 @default.
- W4385336211 creator A5087267081 @default.
- W4385336211 creator A5091042391 @default.
- W4385336211 date "2023-11-01" @default.
- W4385336211 modified "2023-10-18" @default.
- W4385336211 title "Automated wildlife image classification: An active learning tool for ecological applications" @default.
- W4385336211 cites W1981302151 @default.
- W4385336211 cites W1982025193 @default.
- W4385336211 cites W2108570180 @default.
- W4385336211 cites W2108598243 @default.
- W4385336211 cites W2126194992 @default.
- W4385336211 cites W2155115177 @default.
- W4385336211 cites W2767988841 @default.
- W4385336211 cites W2769210209 @default.
- W4385336211 cites W2886193878 @default.
- W4385336211 cites W2901771398 @default.
- W4385336211 cites W2952113774 @default.
- W4385336211 cites W2954932437 @default.
- W4385336211 cites W2954996726 @default.
- W4385336211 cites W2956586819 @default.
- W4385336211 cites W2963446712 @default.
- W4385336211 cites W2964298670 @default.
- W4385336211 cites W2964350391 @default.
- W4385336211 cites W3009074285 @default.
- W4385336211 cites W3087570018 @default.
- W4385336211 cites W3093414036 @default.
- W4385336211 cites W3131523960 @default.
- W4385336211 cites W3134630366 @default.
- W4385336211 cites W3134839696 @default.
- W4385336211 cites W3179950556 @default.
- W4385336211 cites W3205708784 @default.
- W4385336211 cites W3215381527 @default.
- W4385336211 cites W4205422279 @default.
- W4385336211 cites W4210883322 @default.
- W4385336211 cites W4210926750 @default.
- W4385336211 cites W4220760426 @default.
- W4385336211 cites W4226124422 @default.
- W4385336211 cites W4313332248 @default.
- W4385336211 doi "https://doi.org/10.1016/j.ecoinf.2023.102231" @default.
- W4385336211 hasPublicationYear "2023" @default.
- W4385336211 type Work @default.
- W4385336211 citedByCount "0" @default.
- W4385336211 crossrefType "journal-article" @default.
- W4385336211 hasAuthorship W4385336211A5002861503 @default.
- W4385336211 hasAuthorship W4385336211A5006463578 @default.
- W4385336211 hasAuthorship W4385336211A5009013618 @default.
- W4385336211 hasAuthorship W4385336211A5020570041 @default.
- W4385336211 hasAuthorship W4385336211A5038202532 @default.
- W4385336211 hasAuthorship W4385336211A5057239560 @default.
- W4385336211 hasAuthorship W4385336211A5084865676 @default.
- W4385336211 hasAuthorship W4385336211A5087267081 @default.
- W4385336211 hasAuthorship W4385336211A5091042391 @default.
- W4385336211 hasBestOaLocation W43853362112 @default.
- W4385336211 hasConcept C115961682 @default.
- W4385336211 hasConcept C119857082 @default.
- W4385336211 hasConcept C153083717 @default.
- W4385336211 hasConcept C154945302 @default.
- W4385336211 hasConcept C177264268 @default.
- W4385336211 hasConcept C199360897 @default.
- W4385336211 hasConcept C41008148 @default.
- W4385336211 hasConcept C75294576 @default.
- W4385336211 hasConcept C77967617 @default.
- W4385336211 hasConceptScore W4385336211C115961682 @default.
- W4385336211 hasConceptScore W4385336211C119857082 @default.
- W4385336211 hasConceptScore W4385336211C153083717 @default.
- W4385336211 hasConceptScore W4385336211C154945302 @default.
- W4385336211 hasConceptScore W4385336211C177264268 @default.
- W4385336211 hasConceptScore W4385336211C199360897 @default.
- W4385336211 hasConceptScore W4385336211C41008148 @default.
- W4385336211 hasConceptScore W4385336211C75294576 @default.
- W4385336211 hasConceptScore W4385336211C77967617 @default.
- W4385336211 hasLocation W43853362111 @default.
- W4385336211 hasLocation W43853362112 @default.
- W4385336211 hasOpenAccess W4385336211 @default.
- W4385336211 hasPrimaryLocation W43853362111 @default.
- W4385336211 hasRelatedWork W2158269427 @default.
- W4385336211 hasRelatedWork W2275805942 @default.
- W4385336211 hasRelatedWork W2355048207 @default.
- W4385336211 hasRelatedWork W2787993192 @default.
- W4385336211 hasRelatedWork W2847365777 @default.
- W4385336211 hasRelatedWork W3033859939 @default.
- W4385336211 hasRelatedWork W3126051647 @default.
- W4385336211 hasRelatedWork W3203211127 @default.
- W4385336211 hasRelatedWork W4206195464 @default.
- W4385336211 hasRelatedWork W4381280689 @default.
- W4385336211 hasVolume "77" @default.
- W4385336211 isParatext "false" @default.
- W4385336211 isRetracted "false" @default.
- W4385336211 workType "article" @default.