Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385337441> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4385337441 endingPage "100106" @default.
- W4385337441 startingPage "100106" @default.
- W4385337441 abstract "Triggers of organ dysfunction have been associated with the worsening of microcirculatory dysfunction in sepsis, and because microcirculatory changes occur before macro-hemodynamic abnormalities, they can potentially detect disease progression early on. The difficulty in distinguishing altered microcirculatory characteristics corresponding to varying stages of sepsis severity has been a limiting factor for the use of microcirculatory imaging as a diagnostic and prognostic tool in sepsis. The aim of this study was to develop a convolutional neural network (CNN) based on progressive sublingual microcirculatory dysfunction images in sepsis, and test its diagnostic accuracy for these progressive stages. Sepsis was induced in Wistar rats (2 mL of E. coli 108 CFU/mL inoculation into the jugular vein), and 2 mL saline injection in sham animals was the control. Sublingual microvessels of all animals with surrounding tissue images were captured by Sidestream dark field imaging (SDF) at T0 (basal) and T2, T4, and T6 h after sepsis induction. From a total of 137 videos, 37.930 frames were extracted; a part (29.341) was used for the training of Resnet-50 (CNN-construct), and the remaining (8.589) was used for validation of accuracy. The CNN-construct successfully classified the various stages of sepsis with a high accuracy (97.07%). The average AUC value of the ROC curve was 0.9833, and the sensitivity and specificity ranged from 94.57% to 99.91%, respectively, at all time points. By blind testing with new sublingual microscopy images captured at different periods of the acute phase of sepsis, the CNN-construct was able to accurately diagnose the four stages of sepsis severity. Thus, this new method presents the diagnostic potential for different stages of microcirculatory dysfunction and enables the prediction of clinical evolution and therapeutic efficacy. Automated simultaneous assessment of multiple characteristics, both microvessels and adjacent tissues, may account for this diagnostic skill. As such a task cannot be analyzed with human visual criteria only, CNN is a novel method to identify the different stages of sepsis by assessing the distinct features of each stage." @default.
- W4385337441 created "2023-07-29" @default.
- W4385337441 creator A5008751771 @default.
- W4385337441 creator A5022654037 @default.
- W4385337441 creator A5027357256 @default.
- W4385337441 creator A5034995323 @default.
- W4385337441 date "2023-01-01" @default.
- W4385337441 modified "2023-10-01" @default.
- W4385337441 title "A new convolutional neural network-construct for sepsis enhances pattern identification of microcirculatory dysfunction" @default.
- W4385337441 cites W1976371937 @default.
- W4385337441 cites W1977341500 @default.
- W4385337441 cites W1980471018 @default.
- W4385337441 cites W1995485815 @default.
- W4385337441 cites W2006216692 @default.
- W4385337441 cites W2054499486 @default.
- W4385337441 cites W2057364247 @default.
- W4385337441 cites W2078206871 @default.
- W4385337441 cites W2078546046 @default.
- W4385337441 cites W2109637252 @default.
- W4385337441 cites W2112558371 @default.
- W4385337441 cites W2176950688 @default.
- W4385337441 cites W2280404143 @default.
- W4385337441 cites W2531450046 @default.
- W4385337441 cites W2808829764 @default.
- W4385337441 cites W2954996726 @default.
- W4385337441 cites W2998853022 @default.
- W4385337441 cites W3101294892 @default.
- W4385337441 cites W3157400239 @default.
- W4385337441 cites W3163752848 @default.
- W4385337441 cites W4200538893 @default.
- W4385337441 cites W4229868182 @default.
- W4385337441 cites W4238566795 @default.
- W4385337441 doi "https://doi.org/10.1016/j.ibmed.2023.100106" @default.
- W4385337441 hasPublicationYear "2023" @default.
- W4385337441 type Work @default.
- W4385337441 citedByCount "0" @default.
- W4385337441 crossrefType "journal-article" @default.
- W4385337441 hasAuthorship W4385337441A5008751771 @default.
- W4385337441 hasAuthorship W4385337441A5022654037 @default.
- W4385337441 hasAuthorship W4385337441A5027357256 @default.
- W4385337441 hasAuthorship W4385337441A5034995323 @default.
- W4385337441 hasBestOaLocation W43853374411 @default.
- W4385337441 hasConcept C126322002 @default.
- W4385337441 hasConcept C126838900 @default.
- W4385337441 hasConcept C142724271 @default.
- W4385337441 hasConcept C154945302 @default.
- W4385337441 hasConcept C164705383 @default.
- W4385337441 hasConcept C2778384902 @default.
- W4385337441 hasConcept C41008148 @default.
- W4385337441 hasConcept C71924100 @default.
- W4385337441 hasConcept C81363708 @default.
- W4385337441 hasConcept C90924648 @default.
- W4385337441 hasConceptScore W4385337441C126322002 @default.
- W4385337441 hasConceptScore W4385337441C126838900 @default.
- W4385337441 hasConceptScore W4385337441C142724271 @default.
- W4385337441 hasConceptScore W4385337441C154945302 @default.
- W4385337441 hasConceptScore W4385337441C164705383 @default.
- W4385337441 hasConceptScore W4385337441C2778384902 @default.
- W4385337441 hasConceptScore W4385337441C41008148 @default.
- W4385337441 hasConceptScore W4385337441C71924100 @default.
- W4385337441 hasConceptScore W4385337441C81363708 @default.
- W4385337441 hasConceptScore W4385337441C90924648 @default.
- W4385337441 hasFunder F4320320997 @default.
- W4385337441 hasLocation W43853374411 @default.
- W4385337441 hasOpenAccess W4385337441 @default.
- W4385337441 hasPrimaryLocation W43853374411 @default.
- W4385337441 hasRelatedWork W2049214470 @default.
- W4385337441 hasRelatedWork W2358953129 @default.
- W4385337441 hasRelatedWork W2408010109 @default.
- W4385337441 hasRelatedWork W2758277628 @default.
- W4385337441 hasRelatedWork W2902148150 @default.
- W4385337441 hasRelatedWork W2935909890 @default.
- W4385337441 hasRelatedWork W2948807893 @default.
- W4385337441 hasRelatedWork W3029225166 @default.
- W4385337441 hasRelatedWork W3029270103 @default.
- W4385337441 hasRelatedWork W3032477918 @default.
- W4385337441 hasVolume "8" @default.
- W4385337441 isParatext "false" @default.
- W4385337441 isRetracted "false" @default.
- W4385337441 workType "article" @default.