Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385341344> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4385341344 abstract "Drug property prediction, especially toxicity, helps reduce risks in a range of real-world applications. In this paper, we aim to apply various machine-learning models for solving the drug toxicity prediction problem. Among various machine-learning approaches, we select five suitable representatives: random forest, multi-layer perceptron, logistic regression, graph convolutional neural network, and graph isomorphism network (GIN) for conducting experiments on six datasets for toxicity prediction, including Tox 21, ClinTox, ToxCast, SIDER, HIV, and BACE. We design the GIN with four hidden layers and select the Adam optimizer with the learning rate [Formula: see text] and the batch size [Formula: see text]. Furthermore, we use a batch norm layer inside each of the GIN hidden layers. Experimental results show that the designed GIN model is most efficient in distinguishing between safe and toxic drugs and outperforms the others under the supervision of ROC AUC score and recall." @default.
- W4385341344 created "2023-07-29" @default.
- W4385341344 creator A5022499603 @default.
- W4385341344 creator A5034343453 @default.
- W4385341344 creator A5037260152 @default.
- W4385341344 date "2023-08-01" @default.
- W4385341344 modified "2023-10-16" @default.
- W4385341344 title "Drug Toxicity Prediction by Machine Learning Approaches" @default.
- W4385341344 cites W1998056319 @default.
- W4385341344 cites W2145578524 @default.
- W4385341344 cites W2189911347 @default.
- W4385341344 cites W2461470610 @default.
- W4385341344 cites W2473190403 @default.
- W4385341344 cites W2559777733 @default.
- W4385341344 cites W2567534979 @default.
- W4385341344 cites W2966357564 @default.
- W4385341344 cites W2969457089 @default.
- W4385341344 cites W2971690404 @default.
- W4385341344 cites W3088299502 @default.
- W4385341344 cites W3098269892 @default.
- W4385341344 cites W3113447514 @default.
- W4385341344 cites W4213077304 @default.
- W4385341344 cites W4233045210 @default.
- W4385341344 doi "https://doi.org/10.1142/s0218001423510138" @default.
- W4385341344 hasPublicationYear "2023" @default.
- W4385341344 type Work @default.
- W4385341344 citedByCount "0" @default.
- W4385341344 crossrefType "journal-article" @default.
- W4385341344 hasAuthorship W4385341344A5022499603 @default.
- W4385341344 hasAuthorship W4385341344A5034343453 @default.
- W4385341344 hasAuthorship W4385341344A5037260152 @default.
- W4385341344 hasConcept C119857082 @default.
- W4385341344 hasConcept C132525143 @default.
- W4385341344 hasConcept C151956035 @default.
- W4385341344 hasConcept C154945302 @default.
- W4385341344 hasConcept C169258074 @default.
- W4385341344 hasConcept C179717631 @default.
- W4385341344 hasConcept C41008148 @default.
- W4385341344 hasConcept C50644808 @default.
- W4385341344 hasConcept C60908668 @default.
- W4385341344 hasConcept C80444323 @default.
- W4385341344 hasConcept C81363708 @default.
- W4385341344 hasConcept C95623464 @default.
- W4385341344 hasConceptScore W4385341344C119857082 @default.
- W4385341344 hasConceptScore W4385341344C132525143 @default.
- W4385341344 hasConceptScore W4385341344C151956035 @default.
- W4385341344 hasConceptScore W4385341344C154945302 @default.
- W4385341344 hasConceptScore W4385341344C169258074 @default.
- W4385341344 hasConceptScore W4385341344C179717631 @default.
- W4385341344 hasConceptScore W4385341344C41008148 @default.
- W4385341344 hasConceptScore W4385341344C50644808 @default.
- W4385341344 hasConceptScore W4385341344C60908668 @default.
- W4385341344 hasConceptScore W4385341344C80444323 @default.
- W4385341344 hasConceptScore W4385341344C81363708 @default.
- W4385341344 hasConceptScore W4385341344C95623464 @default.
- W4385341344 hasIssue "10" @default.
- W4385341344 hasLocation W43853413441 @default.
- W4385341344 hasOpenAccess W4385341344 @default.
- W4385341344 hasPrimaryLocation W43853413441 @default.
- W4385341344 hasRelatedWork W1915129189 @default.
- W4385341344 hasRelatedWork W3018959556 @default.
- W4385341344 hasRelatedWork W3028499805 @default.
- W4385341344 hasRelatedWork W3168994312 @default.
- W4385341344 hasRelatedWork W3211546796 @default.
- W4385341344 hasRelatedWork W4220975826 @default.
- W4385341344 hasRelatedWork W4226239449 @default.
- W4385341344 hasRelatedWork W4231994957 @default.
- W4385341344 hasRelatedWork W4319430317 @default.
- W4385341344 hasRelatedWork W4385484645 @default.
- W4385341344 hasVolume "37" @default.
- W4385341344 isParatext "false" @default.
- W4385341344 isRetracted "false" @default.
- W4385341344 workType "article" @default.