Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385347462> ?p ?o ?g. }
- W4385347462 abstract "Abstract This paper puts forward a novel integrated microstructure design methodology that replaces the common existing design approaches for multifunctional composites: 1) reconstruction of microstructures, 2) analyzing and quantifying material properties, and 3) inverse design of materials using the diffusion-based generative model (DGM). The problem of microstructure reconstruction is addressed using DGM, which is a new state-of-the-art generative model formulated with a forward Markovian diffusion process and the reverse process. Then, the conditional formulation of DGM is introduced for guidance to the embedded desired material properties with a transformer-based attention mechanism, which enables the inverse design of multifunctional composites. A convolutional neural network (CNN)-based surrogate model is utilized to facilitate the prediction of nonlinear material properties for building microstructure-property linkages. Combined, the proposed artificial intelligence-based design framework enables large data processing and database construction that is often not affordable with resource-intensive finite element method (FEM)-based direct numerical simulation (DNS) and iterative reconstruction methods. What is important is that the proposed DGM-based methodology is not susceptible to unstable training or mode collapse, which are common issues in neural network models that are often difficult to address even with extensive hyperparameter tuning. An example case is presented to demonstrate the effectiveness of the proposed approach, which is designing mechanoluminescence (ML) particulate composites made of europium and dysprosium ions. The results show that the inversely-designed multiple ML microstructure candidates with the proposed generative and surrogate models meet the multiple design requirements (e.g., volume fraction, elastic constant, and light sensitivity). The evaluation of the generated samples' quality and the surrogate models' performance using appropriate metrics are also included. This assessment demonstrates that the proposed integrated methodology offers an end-to-end solution for practical material design applications." @default.
- W4385347462 created "2023-07-29" @default.
- W4385347462 creator A5029139071 @default.
- W4385347462 creator A5056226186 @default.
- W4385347462 creator A5072026276 @default.
- W4385347462 date "2023-07-28" @default.
- W4385347462 modified "2023-09-23" @default.
- W4385347462 title "A Data-Driven Framework for Designing Microstructure of Multifunctional Composites with Deep-Learned Diffusion-Based Generative Models" @default.
- W4385347462 cites W1900233792 @default.
- W4385347462 cites W1980191464 @default.
- W4385347462 cites W1982731491 @default.
- W4385347462 cites W1983379330 @default.
- W4385347462 cites W1984516949 @default.
- W4385347462 cites W1988259512 @default.
- W4385347462 cites W2000426771 @default.
- W4385347462 cites W2015284824 @default.
- W4385347462 cites W2020617765 @default.
- W4385347462 cites W2029422637 @default.
- W4385347462 cites W2046922848 @default.
- W4385347462 cites W2069999296 @default.
- W4385347462 cites W2076196637 @default.
- W4385347462 cites W2077879311 @default.
- W4385347462 cites W2087292325 @default.
- W4385347462 cites W2087956818 @default.
- W4385347462 cites W2091785490 @default.
- W4385347462 cites W2108888387 @default.
- W4385347462 cites W2132470673 @default.
- W4385347462 cites W2165196996 @default.
- W4385347462 cites W2201628685 @default.
- W4385347462 cites W2338304894 @default.
- W4385347462 cites W2583416410 @default.
- W4385347462 cites W2765811365 @default.
- W4385347462 cites W2777098724 @default.
- W4385347462 cites W2779683145 @default.
- W4385347462 cites W2886881512 @default.
- W4385347462 cites W2888743270 @default.
- W4385347462 cites W2890887016 @default.
- W4385347462 cites W2896044205 @default.
- W4385347462 cites W2957111108 @default.
- W4385347462 cites W2972352850 @default.
- W4385347462 cites W3001396333 @default.
- W4385347462 cites W3005282709 @default.
- W4385347462 cites W3011628670 @default.
- W4385347462 cites W3011881217 @default.
- W4385347462 cites W3019967970 @default.
- W4385347462 cites W3037979004 @default.
- W4385347462 cites W3048953455 @default.
- W4385347462 cites W3060307681 @default.
- W4385347462 cites W3094535654 @default.
- W4385347462 cites W3096831136 @default.
- W4385347462 cites W3105374814 @default.
- W4385347462 cites W3115300200 @default.
- W4385347462 cites W3116783766 @default.
- W4385347462 cites W3121219541 @default.
- W4385347462 cites W3127605600 @default.
- W4385347462 cites W3151042244 @default.
- W4385347462 cites W3153614378 @default.
- W4385347462 cites W3155160842 @default.
- W4385347462 cites W3162614523 @default.
- W4385347462 cites W3165027529 @default.
- W4385347462 cites W3166143543 @default.
- W4385347462 cites W3171167100 @default.
- W4385347462 cites W3187506011 @default.
- W4385347462 cites W3191891057 @default.
- W4385347462 cites W3202214970 @default.
- W4385347462 cites W3213866062 @default.
- W4385347462 cites W4206706211 @default.
- W4385347462 cites W4226014430 @default.
- W4385347462 cites W4226240812 @default.
- W4385347462 cites W4280615107 @default.
- W4385347462 cites W4281620463 @default.
- W4385347462 cites W4287027291 @default.
- W4385347462 cites W4295182447 @default.
- W4385347462 cites W4302024697 @default.
- W4385347462 cites W4320498118 @default.
- W4385347462 cites W4366688184 @default.
- W4385347462 doi "https://doi.org/10.21203/rs.3.rs-3171821/v1" @default.
- W4385347462 hasPublicationYear "2023" @default.
- W4385347462 type Work @default.
- W4385347462 citedByCount "0" @default.
- W4385347462 crossrefType "posted-content" @default.
- W4385347462 hasAuthorship W4385347462A5029139071 @default.
- W4385347462 hasAuthorship W4385347462A5056226186 @default.
- W4385347462 hasAuthorship W4385347462A5072026276 @default.
- W4385347462 hasBestOaLocation W43853474621 @default.
- W4385347462 hasConcept C119857082 @default.
- W4385347462 hasConcept C126255220 @default.
- W4385347462 hasConcept C127413603 @default.
- W4385347462 hasConcept C131675550 @default.
- W4385347462 hasConcept C135628077 @default.
- W4385347462 hasConcept C154945302 @default.
- W4385347462 hasConcept C192562407 @default.
- W4385347462 hasConcept C33923547 @default.
- W4385347462 hasConcept C41008148 @default.
- W4385347462 hasConcept C50644808 @default.
- W4385347462 hasConcept C66938386 @default.
- W4385347462 hasConceptScore W4385347462C119857082 @default.
- W4385347462 hasConceptScore W4385347462C126255220 @default.
- W4385347462 hasConceptScore W4385347462C127413603 @default.
- W4385347462 hasConceptScore W4385347462C131675550 @default.