Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385347860> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4385347860 abstract "Abstract Fully autonomous aerial platforms or drones are increasingly used across diverse application areas. Uncooperative drones do not announce their identity nor file flight plans and can pose a potential risk to a variety of critical infrastructures. Understanding an uncooperative drone's intention is important to assigning risk and executing countermeasures. Drones have rapidly changing design, flexible capabilities, and diverse underpinning algorithms. This makes distinguishing malicious from naive intentions across platforms difficult. Intentions are often intangible and unobservable, and a variety of tangible intention classes are often inferred as a proxy. However, inference of drone intention classes (e.g., via inverse learning) using observational data alone is inherently unreliable due to observational and learning bias. Here we develop a novel control-physics informed machine learning (CPhy-ML) that can robustly infer across intention classes, out performing over expert-defined anomaly detection and inverse learning approaches. Our CPhy-ML complementary learning couples the representation power of deep learning with the conservation laws of aerospace control models, reducing bias and instability. The results in simulation and experimentation demonstrate that we can find common intention patterns across the inferred intention classes, ranging from trajectory to reward goals. We believe that this framework can provide deeper insight into the complex nature of intention and a firm step towards to its smooth integration in current counter drone technologies. The techniques developed here can aid the enforcement of drone incursions in a time where geo-fencing is no-longer efficiently enforceable. As transport and operational autonomy is increasingly used, enforcement algorithms can also inform the design of better criminal justice system and safer autonomous systems themselves." @default.
- W4385347860 created "2023-07-29" @default.
- W4385347860 creator A5048700915 @default.
- W4385347860 creator A5062362866 @default.
- W4385347860 creator A5065156490 @default.
- W4385347860 creator A5084240618 @default.
- W4385347860 date "2023-07-28" @default.
- W4385347860 modified "2023-09-24" @default.
- W4385347860 title "Uncovering Drone Intentions using Control Physics Informed Machine Learning" @default.
- W4385347860 doi "https://doi.org/10.21203/rs.3.rs-3127372/v1" @default.
- W4385347860 hasPublicationYear "2023" @default.
- W4385347860 type Work @default.
- W4385347860 citedByCount "0" @default.
- W4385347860 crossrefType "posted-content" @default.
- W4385347860 hasAuthorship W4385347860A5048700915 @default.
- W4385347860 hasAuthorship W4385347860A5062362866 @default.
- W4385347860 hasAuthorship W4385347860A5065156490 @default.
- W4385347860 hasAuthorship W4385347860A5084240618 @default.
- W4385347860 hasBestOaLocation W43853478601 @default.
- W4385347860 hasConcept C111472728 @default.
- W4385347860 hasConcept C119857082 @default.
- W4385347860 hasConcept C136197465 @default.
- W4385347860 hasConcept C138885662 @default.
- W4385347860 hasConcept C154945302 @default.
- W4385347860 hasConcept C2522767166 @default.
- W4385347860 hasConcept C2775924081 @default.
- W4385347860 hasConcept C2776214188 @default.
- W4385347860 hasConcept C2780695315 @default.
- W4385347860 hasConcept C38652104 @default.
- W4385347860 hasConcept C41008148 @default.
- W4385347860 hasConcept C54355233 @default.
- W4385347860 hasConcept C59519942 @default.
- W4385347860 hasConcept C86803240 @default.
- W4385347860 hasConceptScore W4385347860C111472728 @default.
- W4385347860 hasConceptScore W4385347860C119857082 @default.
- W4385347860 hasConceptScore W4385347860C136197465 @default.
- W4385347860 hasConceptScore W4385347860C138885662 @default.
- W4385347860 hasConceptScore W4385347860C154945302 @default.
- W4385347860 hasConceptScore W4385347860C2522767166 @default.
- W4385347860 hasConceptScore W4385347860C2775924081 @default.
- W4385347860 hasConceptScore W4385347860C2776214188 @default.
- W4385347860 hasConceptScore W4385347860C2780695315 @default.
- W4385347860 hasConceptScore W4385347860C38652104 @default.
- W4385347860 hasConceptScore W4385347860C41008148 @default.
- W4385347860 hasConceptScore W4385347860C54355233 @default.
- W4385347860 hasConceptScore W4385347860C59519942 @default.
- W4385347860 hasConceptScore W4385347860C86803240 @default.
- W4385347860 hasLocation W43853478601 @default.
- W4385347860 hasOpenAccess W4385347860 @default.
- W4385347860 hasPrimaryLocation W43853478601 @default.
- W4385347860 hasRelatedWork W2000634356 @default.
- W4385347860 hasRelatedWork W2914365100 @default.
- W4385347860 hasRelatedWork W2961085424 @default.
- W4385347860 hasRelatedWork W3021157052 @default.
- W4385347860 hasRelatedWork W4212936879 @default.
- W4385347860 hasRelatedWork W4214522433 @default.
- W4385347860 hasRelatedWork W4220882927 @default.
- W4385347860 hasRelatedWork W4297860583 @default.
- W4385347860 hasRelatedWork W4306674287 @default.
- W4385347860 hasRelatedWork W4313171776 @default.
- W4385347860 isParatext "false" @default.
- W4385347860 isRetracted "false" @default.
- W4385347860 workType "article" @default.