Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385349013> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4385349013 endingPage "1494" @default.
- W4385349013 startingPage "1494" @default.
- W4385349013 abstract "Polymetallic nodules, found abundantly in deep-ocean deposits, possess significant economic value and represent a valuable resource due to their high metal enrichment, crucial for the high-tech industry. However, accurately evaluating these valuable mineral resources presents challenges for traditional image segmentation methods due to issues like color distortion, uneven illumination, and the diverse distribution of nodules in seabed images. Moreover, the scarcity of annotated images further compounds these challenges, impeding resource assessment efforts. To overcome these limitations, we propose a novel two-stage diffusion-based model for nodule image segmentation, along with a linear regression model for predicting nodule abundance based on the coverage obtained through nodule segmentation. In the first stage, we leverage a diffusion model trained on predominantly unlabeled mineral images to extract multiscale semantic features. Subsequently, we introduce an efficient segmentation network designed specifically for nodule segmentation. Experimental evaluations conducted on a comprehensive seabed nodule dataset demonstrate the exceptional performance of our approach compared to other deep learning methods, particularly in addressing challenging conditions like uneven illumination and dense nodule distributions. Our proposed model not only extends the application of diffusion models but also exhibits superior performance in seabed nodule segmentation. Additionally, we establish a linear regression model that accurately predicts nodule abundance by utilizing the coverage calculated through seabed nodule image segmentation. The results highlight the model’s capacity to accurately assess nodule coverage and abundance, even in regions beyond the sampled sites, thereby providing valuable insights for seabed resource evaluation." @default.
- W4385349013 created "2023-07-29" @default.
- W4385349013 creator A5014673031 @default.
- W4385349013 creator A5051573765 @default.
- W4385349013 creator A5085211629 @default.
- W4385349013 date "2023-07-27" @default.
- W4385349013 modified "2023-09-26" @default.
- W4385349013 title "Polymetallic Nodule Resource Assessment of Seabed Photography Based on Denoising Diffusion Probabilistic Models" @default.
- W4385349013 cites W1901129140 @default.
- W4385349013 cites W1903029394 @default.
- W4385349013 cites W1966636811 @default.
- W4385349013 cites W1982711079 @default.
- W4385349013 cites W2029647685 @default.
- W4385349013 cites W2136411942 @default.
- W4385349013 cites W2183182206 @default.
- W4385349013 cites W2345349784 @default.
- W4385349013 cites W2602894382 @default.
- W4385349013 cites W2763926640 @default.
- W4385349013 cites W2945932878 @default.
- W4385349013 cites W2951376261 @default.
- W4385349013 cites W2963150697 @default.
- W4385349013 cites W3007658031 @default.
- W4385349013 cites W3011513513 @default.
- W4385349013 cites W3110954889 @default.
- W4385349013 cites W3129798121 @default.
- W4385349013 cites W3152805213 @default.
- W4385349013 cites W3172577361 @default.
- W4385349013 cites W3202377682 @default.
- W4385349013 cites W4242841269 @default.
- W4385349013 cites W4306385845 @default.
- W4385349013 cites W4307299251 @default.
- W4385349013 cites W4360884927 @default.
- W4385349013 doi "https://doi.org/10.3390/jmse11081494" @default.
- W4385349013 hasPublicationYear "2023" @default.
- W4385349013 type Work @default.
- W4385349013 citedByCount "0" @default.
- W4385349013 crossrefType "journal-article" @default.
- W4385349013 hasAuthorship W4385349013A5014673031 @default.
- W4385349013 hasAuthorship W4385349013A5051573765 @default.
- W4385349013 hasAuthorship W4385349013A5085211629 @default.
- W4385349013 hasBestOaLocation W43853490131 @default.
- W4385349013 hasConcept C111368507 @default.
- W4385349013 hasConcept C127313418 @default.
- W4385349013 hasConcept C151730666 @default.
- W4385349013 hasConcept C153180895 @default.
- W4385349013 hasConcept C154945302 @default.
- W4385349013 hasConcept C2776731575 @default.
- W4385349013 hasConcept C31972630 @default.
- W4385349013 hasConcept C33613203 @default.
- W4385349013 hasConcept C41008148 @default.
- W4385349013 hasConcept C89600930 @default.
- W4385349013 hasConceptScore W4385349013C111368507 @default.
- W4385349013 hasConceptScore W4385349013C127313418 @default.
- W4385349013 hasConceptScore W4385349013C151730666 @default.
- W4385349013 hasConceptScore W4385349013C153180895 @default.
- W4385349013 hasConceptScore W4385349013C154945302 @default.
- W4385349013 hasConceptScore W4385349013C2776731575 @default.
- W4385349013 hasConceptScore W4385349013C31972630 @default.
- W4385349013 hasConceptScore W4385349013C33613203 @default.
- W4385349013 hasConceptScore W4385349013C41008148 @default.
- W4385349013 hasConceptScore W4385349013C89600930 @default.
- W4385349013 hasIssue "8" @default.
- W4385349013 hasLocation W43853490131 @default.
- W4385349013 hasOpenAccess W4385349013 @default.
- W4385349013 hasPrimaryLocation W43853490131 @default.
- W4385349013 hasRelatedWork W1669643531 @default.
- W4385349013 hasRelatedWork W1982826852 @default.
- W4385349013 hasRelatedWork W2005437358 @default.
- W4385349013 hasRelatedWork W2008656436 @default.
- W4385349013 hasRelatedWork W2023558673 @default.
- W4385349013 hasRelatedWork W2110230079 @default.
- W4385349013 hasRelatedWork W2134924024 @default.
- W4385349013 hasRelatedWork W2517104666 @default.
- W4385349013 hasRelatedWork W2613186388 @default.
- W4385349013 hasRelatedWork W1967061043 @default.
- W4385349013 hasVolume "11" @default.
- W4385349013 isParatext "false" @default.
- W4385349013 isRetracted "false" @default.
- W4385349013 workType "article" @default.