Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385349737> ?p ?o ?g. }
- W4385349737 endingPage "11681" @default.
- W4385349737 startingPage "11681" @default.
- W4385349737 abstract "The growing global population and accompanying increase in food demand has put pressure on agriculture to produce higher yields in the face of numerous challenges, including plant diseases. Tomato is a widely cultivated and essential food crop that is particularly susceptible to disease, resulting in significant economic losses and hindrances to food security. Recently, Artificial Intelligence (AI) has emerged as a promising tool for detecting and classifying tomato leaf diseases with exceptional accuracy and efficiency, empowering farmers to take proactive measures to prevent crop damage and production loss. AI algorithms are capable of processing vast amounts of data objectively and without human bias, making them a potent tool for detecting even subtle variations in plant diseases that traditional techniques might miss. This paper provides a comprehensive overview of the most recent advancements in tomato leaf disease classification using Machine Learning (ML) and Deep Learning (DL) techniques, with an emphasis on how these approaches can enhance the accuracy and effectiveness of disease classification. Several ML and DL models, including convolutional neural networks (CNN), are evaluated for tomato leaf disease classification. This review paper highlights the various features and techniques used in data acquisition as well as evaluation metrics employed to assess the performance of these models. Moreover, this paper emphasizes how AI techniques can address the limitations of traditional techniques in tomato leaf disease classification, leading to improved crop yields and more efficient management techniques, ultimately contributing to global food security. This review paper concludes by outlining the limitations of recent research and proposing new research directions in the field of AI-assisted tomato leaf disease classification. These insights will be of significant value to researchers and professionals interested in utilizing ML and DL techniques for tomato leaf disease classification and ultimately contribute to sustainable food production (SDG-3)." @default.
- W4385349737 created "2023-07-29" @default.
- W4385349737 creator A5015013037 @default.
- W4385349737 creator A5046000889 @default.
- W4385349737 creator A5092561196 @default.
- W4385349737 date "2023-07-28" @default.
- W4385349737 modified "2023-09-26" @default.
- W4385349737 title "Transformative Role of Artificial Intelligence in Advancing Sustainable Tomato (Solanum lycopersicum) Disease Management for Global Food Security: A Comprehensive Review" @default.
- W4385349737 cites W2097117768 @default.
- W4385349737 cites W2114556435 @default.
- W4385349737 cites W2194775991 @default.
- W4385349737 cites W2473156356 @default.
- W4385349737 cites W2546322820 @default.
- W4385349737 cites W2557728737 @default.
- W4385349737 cites W2565639579 @default.
- W4385349737 cites W2614850301 @default.
- W4385349737 cites W2618530766 @default.
- W4385349737 cites W2753403518 @default.
- W4385349737 cites W2789255992 @default.
- W4385349737 cites W2789631060 @default.
- W4385349737 cites W2889543275 @default.
- W4385349737 cites W2895898998 @default.
- W4385349737 cites W2914732893 @default.
- W4385349737 cites W2931555975 @default.
- W4385349737 cites W2938959907 @default.
- W4385349737 cites W2953574394 @default.
- W4385349737 cites W2963163009 @default.
- W4385349737 cites W2963934397 @default.
- W4385349737 cites W2969591642 @default.
- W4385349737 cites W2970576551 @default.
- W4385349737 cites W2980697606 @default.
- W4385349737 cites W2989646980 @default.
- W4385349737 cites W2995955771 @default.
- W4385349737 cites W3004607924 @default.
- W4385349737 cites W3006450303 @default.
- W4385349737 cites W3007600163 @default.
- W4385349737 cites W3013403470 @default.
- W4385349737 cites W3017495261 @default.
- W4385349737 cites W3033345523 @default.
- W4385349737 cites W3035016091 @default.
- W4385349737 cites W3035503061 @default.
- W4385349737 cites W3035982802 @default.
- W4385349737 cites W3036537849 @default.
- W4385349737 cites W3043742172 @default.
- W4385349737 cites W3047564907 @default.
- W4385349737 cites W3080594017 @default.
- W4385349737 cites W3082289303 @default.
- W4385349737 cites W3088754512 @default.
- W4385349737 cites W3091788134 @default.
- W4385349737 cites W3095722810 @default.
- W4385349737 cites W3109852393 @default.
- W4385349737 cites W3118987644 @default.
- W4385349737 cites W3119462501 @default.
- W4385349737 cites W3130766450 @default.
- W4385349737 cites W3130870100 @default.
- W4385349737 cites W3132328762 @default.
- W4385349737 cites W3150482413 @default.
- W4385349737 cites W3151002445 @default.
- W4385349737 cites W3153257580 @default.
- W4385349737 cites W3155966371 @default.
- W4385349737 cites W3159001133 @default.
- W4385349737 cites W3162920944 @default.
- W4385349737 cites W3168123399 @default.
- W4385349737 cites W3173170759 @default.
- W4385349737 cites W3174876319 @default.
- W4385349737 cites W3175496851 @default.
- W4385349737 cites W3177802711 @default.
- W4385349737 cites W3180632644 @default.
- W4385349737 cites W3196840230 @default.
- W4385349737 cites W3199188637 @default.
- W4385349737 cites W3201246529 @default.
- W4385349737 cites W3202678850 @default.
- W4385349737 cites W3202844853 @default.
- W4385349737 cites W3204243169 @default.
- W4385349737 cites W3206426688 @default.
- W4385349737 cites W3211538292 @default.
- W4385349737 cites W4200086387 @default.
- W4385349737 cites W4200163605 @default.
- W4385349737 cites W4200416220 @default.
- W4385349737 cites W4205228781 @default.
- W4385349737 cites W4205555581 @default.
- W4385349737 cites W4205741157 @default.
- W4385349737 cites W4206796133 @default.
- W4385349737 cites W4210574319 @default.
- W4385349737 cites W4210783301 @default.
- W4385349737 cites W4211114096 @default.
- W4385349737 cites W4212965978 @default.
- W4385349737 cites W4214499967 @default.
- W4385349737 cites W4214770513 @default.
- W4385349737 cites W4220902668 @default.
- W4385349737 cites W4223961890 @default.
- W4385349737 cites W4225274258 @default.
- W4385349737 cites W4226024554 @default.
- W4385349737 cites W4229450580 @default.
- W4385349737 cites W4229459702 @default.
- W4385349737 cites W4256056287 @default.
- W4385349737 cites W4281264259 @default.
- W4385349737 cites W4281616679 @default.