Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385350038> ?p ?o ?g. }
- W4385350038 endingPage "1647" @default.
- W4385350038 startingPage "1647" @default.
- W4385350038 abstract "Nuclear medicine has acquired a crucial role in the management of patients with neuroendocrine neoplasms (NENs) by improving the accuracy of diagnosis and staging as well as their risk stratification and personalized therapies, including radioligand therapies (RLT). Artificial intelligence (AI) and radiomics can enable physicians to further improve the overall efficiency and accuracy of the use of these tools in both diagnostic and therapeutic settings by improving the prediction of the tumor grade, differential diagnosis from other malignancies, assessment of tumor behavior and aggressiveness, and prediction of treatment response. This systematic review aims to describe the state-of-the-art AI and radiomics applications in the molecular imaging of NENs." @default.
- W4385350038 created "2023-07-29" @default.
- W4385350038 creator A5004330052 @default.
- W4385350038 creator A5004858901 @default.
- W4385350038 creator A5016515301 @default.
- W4385350038 creator A5021935101 @default.
- W4385350038 creator A5028915697 @default.
- W4385350038 creator A5033465412 @default.
- W4385350038 creator A5034995452 @default.
- W4385350038 creator A5040900890 @default.
- W4385350038 creator A5042382809 @default.
- W4385350038 creator A5049341838 @default.
- W4385350038 creator A5070283383 @default.
- W4385350038 creator A5087431312 @default.
- W4385350038 creator A5089609721 @default.
- W4385350038 date "2023-07-28" @default.
- W4385350038 modified "2023-10-10" @default.
- W4385350038 title "Applications of Artificial Intelligence and Radiomics in Molecular Hybrid Imaging and Theragnostics for Neuro-Endocrine Neoplasms (NENs)" @default.
- W4385350038 cites W2086632167 @default.
- W4385350038 cites W2089275510 @default.
- W4385350038 cites W2090257199 @default.
- W4385350038 cites W2099300497 @default.
- W4385350038 cites W2122196655 @default.
- W4385350038 cites W2128739912 @default.
- W4385350038 cites W2149214723 @default.
- W4385350038 cites W2157744078 @default.
- W4385350038 cites W2174661749 @default.
- W4385350038 cites W2409456704 @default.
- W4385350038 cites W2480617933 @default.
- W4385350038 cites W2508212747 @default.
- W4385350038 cites W2512154917 @default.
- W4385350038 cites W2523732469 @default.
- W4385350038 cites W2526424888 @default.
- W4385350038 cites W2531847789 @default.
- W4385350038 cites W2576440140 @default.
- W4385350038 cites W2588249602 @default.
- W4385350038 cites W2588681363 @default.
- W4385350038 cites W2592442081 @default.
- W4385350038 cites W2599795450 @default.
- W4385350038 cites W2619499717 @default.
- W4385350038 cites W2770481394 @default.
- W4385350038 cites W2791478600 @default.
- W4385350038 cites W2804779932 @default.
- W4385350038 cites W2809848353 @default.
- W4385350038 cites W2883513488 @default.
- W4385350038 cites W2909918086 @default.
- W4385350038 cites W2946147212 @default.
- W4385350038 cites W2954296981 @default.
- W4385350038 cites W2966007643 @default.
- W4385350038 cites W2992063773 @default.
- W4385350038 cites W2998531620 @default.
- W4385350038 cites W2998789541 @default.
- W4385350038 cites W3001561878 @default.
- W4385350038 cites W3006104185 @default.
- W4385350038 cites W3017135812 @default.
- W4385350038 cites W3030790048 @default.
- W4385350038 cites W3033504188 @default.
- W4385350038 cites W3035253784 @default.
- W4385350038 cites W3036864410 @default.
- W4385350038 cites W3088198221 @default.
- W4385350038 cites W3104364527 @default.
- W4385350038 cites W3122501416 @default.
- W4385350038 cites W3126090594 @default.
- W4385350038 cites W3128650343 @default.
- W4385350038 cites W3130700371 @default.
- W4385350038 cites W3133297330 @default.
- W4385350038 cites W3134617898 @default.
- W4385350038 cites W3157235579 @default.
- W4385350038 cites W3162277433 @default.
- W4385350038 cites W3164206047 @default.
- W4385350038 cites W3187641479 @default.
- W4385350038 cites W3201200245 @default.
- W4385350038 cites W3202012590 @default.
- W4385350038 cites W3211198353 @default.
- W4385350038 cites W3216469376 @default.
- W4385350038 cites W3216669307 @default.
- W4385350038 cites W3217285723 @default.
- W4385350038 cites W4213267439 @default.
- W4385350038 cites W4213363138 @default.
- W4385350038 cites W4220660991 @default.
- W4385350038 cites W4220769815 @default.
- W4385350038 cites W4220811791 @default.
- W4385350038 cites W4224045983 @default.
- W4385350038 cites W4281660274 @default.
- W4385350038 cites W4293173255 @default.
- W4385350038 cites W4307561370 @default.
- W4385350038 cites W4307995537 @default.
- W4385350038 cites W4312210888 @default.
- W4385350038 doi "https://doi.org/10.3390/life13081647" @default.
- W4385350038 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37629503" @default.
- W4385350038 hasPublicationYear "2023" @default.
- W4385350038 type Work @default.
- W4385350038 citedByCount "1" @default.
- W4385350038 crossrefType "journal-article" @default.
- W4385350038 hasAuthorship W4385350038A5004330052 @default.
- W4385350038 hasAuthorship W4385350038A5004858901 @default.
- W4385350038 hasAuthorship W4385350038A5016515301 @default.
- W4385350038 hasAuthorship W4385350038A5021935101 @default.