Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385351750> ?p ?o ?g. }
- W4385351750 endingPage "18" @default.
- W4385351750 startingPage "1" @default.
- W4385351750 abstract "Summary Geophysical logging is widely used in lithofacies identification, reservoir parameter prediction, and geological modeling. However, it is common to have well-log sections with low-quality and/or missing segments. Repeating the well-log measurements is not only expensive but might also be impossible depending on the condition of the borehole walls. In these situations, reliable and accurate well-log prediction is, therefore, necessary in different stages of the geomodeling workflow. In this study, we propose a time series regression model to predict missing well-log data, incorporating facies information as an additional geological input and using discrete wavelet transform (DWT) to denoise the input data set. The main contributions of this work are threefold: (i) We jointly use facies information with well logs as the input data set; (ii) we use DWT to denoise the input data and consequently improve the signal-to-noise ratio of the input data; and (iii) we regard the depth domain as the time domain and use a time series regression algorithm for log reconstruction modeling. We show a real application example in two distinct scenarios. In the first, we predict missing well-log intervals. In the second, we predict complete well logs. The experimental results show the ability of the proposed prediction model to recover missing well-log data with high accuracy levels." @default.
- W4385351750 created "2023-07-29" @default.
- W4385351750 creator A5003453695 @default.
- W4385351750 creator A5007176789 @default.
- W4385351750 creator A5013823766 @default.
- W4385351750 creator A5015430802 @default.
- W4385351750 creator A5028509208 @default.
- W4385351750 creator A5041954324 @default.
- W4385351750 creator A5046152810 @default.
- W4385351750 creator A5069644276 @default.
- W4385351750 date "2023-07-01" @default.
- W4385351750 modified "2023-09-27" @default.
- W4385351750 title "Reconstruction of Missing Well-Logs Using Facies-Informed Discrete Wavelet Transform and Time Series Regression" @default.
- W4385351750 cites W1896001907 @default.
- W4385351750 cites W1983430068 @default.
- W4385351750 cites W1987688897 @default.
- W4385351750 cites W1993192109 @default.
- W4385351750 cites W1996021349 @default.
- W4385351750 cites W2017670056 @default.
- W4385351750 cites W2020014449 @default.
- W4385351750 cites W2083826621 @default.
- W4385351750 cites W2093990067 @default.
- W4385351750 cites W2116988482 @default.
- W4385351750 cites W2129270900 @default.
- W4385351750 cites W2158940042 @default.
- W4385351750 cites W2566563283 @default.
- W4385351750 cites W3004206781 @default.
- W4385351750 cites W3011415648 @default.
- W4385351750 cites W3011523529 @default.
- W4385351750 cites W3016477766 @default.
- W4385351750 cites W3047909840 @default.
- W4385351750 cites W3048528067 @default.
- W4385351750 cites W3114074613 @default.
- W4385351750 cites W3141500568 @default.
- W4385351750 cites W3158129787 @default.
- W4385351750 cites W3169976860 @default.
- W4385351750 cites W3174764269 @default.
- W4385351750 cites W3177129545 @default.
- W4385351750 cites W3196967845 @default.
- W4385351750 cites W3197231937 @default.
- W4385351750 cites W3198955447 @default.
- W4385351750 cites W3200279263 @default.
- W4385351750 cites W3207974361 @default.
- W4385351750 cites W3214806500 @default.
- W4385351750 cites W4224248509 @default.
- W4385351750 cites W4224249004 @default.
- W4385351750 cites W4229058359 @default.
- W4385351750 cites W4283721532 @default.
- W4385351750 cites W4293148730 @default.
- W4385351750 cites W4307134566 @default.
- W4385351750 cites W4308491673 @default.
- W4385351750 doi "https://doi.org/10.2118/217425-pa" @default.
- W4385351750 hasPublicationYear "2023" @default.
- W4385351750 type Work @default.
- W4385351750 citedByCount "0" @default.
- W4385351750 crossrefType "journal-article" @default.
- W4385351750 hasAuthorship W4385351750A5003453695 @default.
- W4385351750 hasAuthorship W4385351750A5007176789 @default.
- W4385351750 hasAuthorship W4385351750A5013823766 @default.
- W4385351750 hasAuthorship W4385351750A5015430802 @default.
- W4385351750 hasAuthorship W4385351750A5028509208 @default.
- W4385351750 hasAuthorship W4385351750A5041954324 @default.
- W4385351750 hasAuthorship W4385351750A5046152810 @default.
- W4385351750 hasAuthorship W4385351750A5069644276 @default.
- W4385351750 hasConcept C105795698 @default.
- W4385351750 hasConcept C11413529 @default.
- W4385351750 hasConcept C119857082 @default.
- W4385351750 hasConcept C124101348 @default.
- W4385351750 hasConcept C127313418 @default.
- W4385351750 hasConcept C143724316 @default.
- W4385351750 hasConcept C151406439 @default.
- W4385351750 hasConcept C151730666 @default.
- W4385351750 hasConcept C153180895 @default.
- W4385351750 hasConcept C154945302 @default.
- W4385351750 hasConcept C196216189 @default.
- W4385351750 hasConcept C33923547 @default.
- W4385351750 hasConcept C35817400 @default.
- W4385351750 hasConcept C41008148 @default.
- W4385351750 hasConcept C47432892 @default.
- W4385351750 hasConcept C58489278 @default.
- W4385351750 hasConcept C8058405 @default.
- W4385351750 hasConcept C83546350 @default.
- W4385351750 hasConcept C9357733 @default.
- W4385351750 hasConceptScore W4385351750C105795698 @default.
- W4385351750 hasConceptScore W4385351750C11413529 @default.
- W4385351750 hasConceptScore W4385351750C119857082 @default.
- W4385351750 hasConceptScore W4385351750C124101348 @default.
- W4385351750 hasConceptScore W4385351750C127313418 @default.
- W4385351750 hasConceptScore W4385351750C143724316 @default.
- W4385351750 hasConceptScore W4385351750C151406439 @default.
- W4385351750 hasConceptScore W4385351750C151730666 @default.
- W4385351750 hasConceptScore W4385351750C153180895 @default.
- W4385351750 hasConceptScore W4385351750C154945302 @default.
- W4385351750 hasConceptScore W4385351750C196216189 @default.
- W4385351750 hasConceptScore W4385351750C33923547 @default.
- W4385351750 hasConceptScore W4385351750C35817400 @default.
- W4385351750 hasConceptScore W4385351750C41008148 @default.
- W4385351750 hasConceptScore W4385351750C47432892 @default.