Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385354906> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4385354906 endingPage "341" @default.
- W4385354906 startingPage "329" @default.
- W4385354906 abstract "The nature of healthcare data is complex. It is not easy to interpret data by analyzing or manual process. Machine learning methodologies such as deep neural network models have grown more appealing in recent years in the healthcare sector. Machine learning (ML) algorithms are data analysis techniques that are efficient and effective at uncovering hidden patterns and other helpful information from large amounts of health data those conventional analytics cannot handle. On the other hand, deep learning (DL) approaches have been proved to be viable methodologies for pattern identification in healthcare systems. This chapter aims to consider DL methodologies for healthcare systems by reviewing recent trends, cutting-edge network topologies, applications, and industry developments. The initial goal is to provide a detailed understanding of how DL models are used in healthcare solutions to connect DL human healthcare interpretability and approaches. This chapter also focuses on the current and future open challenges and directions." @default.
- W4385354906 created "2023-07-29" @default.
- W4385354906 creator A5042730658 @default.
- W4385354906 creator A5047949103 @default.
- W4385354906 creator A5051836527 @default.
- W4385354906 creator A5079304949 @default.
- W4385354906 date "2023-01-01" @default.
- W4385354906 modified "2023-09-26" @default.
- W4385354906 title "Understanding of healthcare problems and solutions using deep learning" @default.
- W4385354906 cites W2408288218 @default.
- W4385354906 cites W2592950930 @default.
- W4385354906 cites W2788633781 @default.
- W4385354906 cites W2911850973 @default.
- W4385354906 cites W2947012480 @default.
- W4385354906 cites W2951635356 @default.
- W4385354906 cites W2960193895 @default.
- W4385354906 cites W2962879957 @default.
- W4385354906 cites W2963178695 @default.
- W4385354906 cites W2999936618 @default.
- W4385354906 cites W3006913750 @default.
- W4385354906 cites W3010405236 @default.
- W4385354906 cites W3093737097 @default.
- W4385354906 cites W3127076115 @default.
- W4385354906 cites W3143466921 @default.
- W4385354906 cites W3168324141 @default.
- W4385354906 cites W3214318189 @default.
- W4385354906 cites W4223615853 @default.
- W4385354906 doi "https://doi.org/10.1016/b978-0-443-19413-9.00016-3" @default.
- W4385354906 hasPublicationYear "2023" @default.
- W4385354906 type Work @default.
- W4385354906 citedByCount "0" @default.
- W4385354906 crossrefType "book-chapter" @default.
- W4385354906 hasAuthorship W4385354906A5042730658 @default.
- W4385354906 hasAuthorship W4385354906A5047949103 @default.
- W4385354906 hasAuthorship W4385354906A5051836527 @default.
- W4385354906 hasAuthorship W4385354906A5079304949 @default.
- W4385354906 hasConcept C108583219 @default.
- W4385354906 hasConcept C111919701 @default.
- W4385354906 hasConcept C116834253 @default.
- W4385354906 hasConcept C119857082 @default.
- W4385354906 hasConcept C154945302 @default.
- W4385354906 hasConcept C160735492 @default.
- W4385354906 hasConcept C162307627 @default.
- W4385354906 hasConcept C162324750 @default.
- W4385354906 hasConcept C2522767166 @default.
- W4385354906 hasConcept C2781067378 @default.
- W4385354906 hasConcept C41008148 @default.
- W4385354906 hasConcept C50522688 @default.
- W4385354906 hasConcept C50644808 @default.
- W4385354906 hasConcept C59822182 @default.
- W4385354906 hasConcept C79158427 @default.
- W4385354906 hasConcept C86803240 @default.
- W4385354906 hasConcept C98045186 @default.
- W4385354906 hasConceptScore W4385354906C108583219 @default.
- W4385354906 hasConceptScore W4385354906C111919701 @default.
- W4385354906 hasConceptScore W4385354906C116834253 @default.
- W4385354906 hasConceptScore W4385354906C119857082 @default.
- W4385354906 hasConceptScore W4385354906C154945302 @default.
- W4385354906 hasConceptScore W4385354906C160735492 @default.
- W4385354906 hasConceptScore W4385354906C162307627 @default.
- W4385354906 hasConceptScore W4385354906C162324750 @default.
- W4385354906 hasConceptScore W4385354906C2522767166 @default.
- W4385354906 hasConceptScore W4385354906C2781067378 @default.
- W4385354906 hasConceptScore W4385354906C41008148 @default.
- W4385354906 hasConceptScore W4385354906C50522688 @default.
- W4385354906 hasConceptScore W4385354906C50644808 @default.
- W4385354906 hasConceptScore W4385354906C59822182 @default.
- W4385354906 hasConceptScore W4385354906C79158427 @default.
- W4385354906 hasConceptScore W4385354906C86803240 @default.
- W4385354906 hasConceptScore W4385354906C98045186 @default.
- W4385354906 hasLocation W43853549061 @default.
- W4385354906 hasOpenAccess W4385354906 @default.
- W4385354906 hasPrimaryLocation W43853549061 @default.
- W4385354906 hasRelatedWork W3006943036 @default.
- W4385354906 hasRelatedWork W3129898729 @default.
- W4385354906 hasRelatedWork W4206534706 @default.
- W4385354906 hasRelatedWork W4223943233 @default.
- W4385354906 hasRelatedWork W4229079080 @default.
- W4385354906 hasRelatedWork W4299487748 @default.
- W4385354906 hasRelatedWork W4310880831 @default.
- W4385354906 hasRelatedWork W4312200629 @default.
- W4385354906 hasRelatedWork W4360585206 @default.
- W4385354906 hasRelatedWork W4380075502 @default.
- W4385354906 isParatext "false" @default.
- W4385354906 isRetracted "false" @default.
- W4385354906 workType "book-chapter" @default.