Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385359007> ?p ?o ?g. }
- W4385359007 endingPage "2700" @default.
- W4385359007 startingPage "2700" @default.
- W4385359007 abstract "In the field of hydrological model parameter uncertainty analysis, sampling methods such as Differential Evolution based on Monte Carlo Markov Chain (DE-MC) and Shuffled Complex Evolution Metropolis (SCEM-UA) algorithms have been widely applied. However, there are two drawbacks which may introduce bad effects into the uncertainty analysis. The first disadvantage is that few optimization algorithms consider the physical meaning and reasonable range of the model parameters. The traditional sampling algorithms may generate non-physical parameter values and poorly simulated hydrographs when carrying out the uncertainty analysis. The second disadvantage is that the widely used sampling algorithms commonly involve only a single objective. Such sampling procedures implicitly introduce too strong an “exploitation” property into the sampling process, consequently destroying the diversity property of the sampled population, i.e., the “exploration” property is bad. Here, “exploitation” refers to using good already-existing solutions and making refinements to them, so that their fitness will improve further; meanwhile, “exploration” denotes that the algorithm searches for new solutions in new regions. With the aim of improving the performance of uncertainty analysis algorithms, in this research, a constrained multi-objective intelligent optimization algorithm is proposed that preserves the physical meaning of the model parameter using the penalty function method and maintains the population diversity using a Non-dominated Sorted Genetic Algorithm-II (NSGA-II) multi-objective optimization procedure. The representativeness of the parameter population is estimated on the basis of the mean and standard deviation of the Nash–Sutcliffe coefficient, and the diversity is evaluated on the basis of the mean Euclidean distance. The Chengcun watershed is selected as the study area, and uncertainty analysis is carried out. The numerical simulations indicate that the performance of the proposed algorithm is significantly improved, preserving the physical meaning and reasonable range of the model parameters while significantly improving the diversity and reliability of the sampled parameter population." @default.
- W4385359007 created "2023-07-29" @default.
- W4385359007 creator A5006650222 @default.
- W4385359007 creator A5016435310 @default.
- W4385359007 creator A5034660558 @default.
- W4385359007 creator A5042211446 @default.
- W4385359007 creator A5057996165 @default.
- W4385359007 creator A5063889963 @default.
- W4385359007 date "2023-07-26" @default.
- W4385359007 modified "2023-09-28" @default.
- W4385359007 title "Improving the Performance of Hydrological Model Parameter Uncertainty Analysis Using a Constrained Multi-Objective Intelligent Optimization Algorithm" @default.
- W4385359007 cites W1483307070 @default.
- W4385359007 cites W1507764682 @default.
- W4385359007 cites W1909649765 @default.
- W4385359007 cites W1972446933 @default.
- W4385359007 cites W1986759396 @default.
- W4385359007 cites W1987017697 @default.
- W4385359007 cites W1991921673 @default.
- W4385359007 cites W2024089565 @default.
- W4385359007 cites W2032182587 @default.
- W4385359007 cites W2033580107 @default.
- W4385359007 cites W2037460094 @default.
- W4385359007 cites W2124505806 @default.
- W4385359007 cites W2126105956 @default.
- W4385359007 cites W2132071585 @default.
- W4385359007 cites W2137340504 @default.
- W4385359007 cites W2255236674 @default.
- W4385359007 cites W2302412978 @default.
- W4385359007 cites W2322835104 @default.
- W4385359007 cites W2507892057 @default.
- W4385359007 cites W2604171003 @default.
- W4385359007 cites W2623711278 @default.
- W4385359007 cites W2735813789 @default.
- W4385359007 cites W2759664037 @default.
- W4385359007 cites W2776551161 @default.
- W4385359007 cites W2785767012 @default.
- W4385359007 cites W2809890364 @default.
- W4385359007 cites W2889025699 @default.
- W4385359007 cites W2907184899 @default.
- W4385359007 cites W2935380169 @default.
- W4385359007 cites W2969696008 @default.
- W4385359007 cites W3019402966 @default.
- W4385359007 cites W3089254899 @default.
- W4385359007 cites W4210386711 @default.
- W4385359007 doi "https://doi.org/10.3390/w15152700" @default.
- W4385359007 hasPublicationYear "2023" @default.
- W4385359007 type Work @default.
- W4385359007 citedByCount "0" @default.
- W4385359007 crossrefType "journal-article" @default.
- W4385359007 hasAuthorship W4385359007A5006650222 @default.
- W4385359007 hasAuthorship W4385359007A5016435310 @default.
- W4385359007 hasAuthorship W4385359007A5034660558 @default.
- W4385359007 hasAuthorship W4385359007A5042211446 @default.
- W4385359007 hasAuthorship W4385359007A5057996165 @default.
- W4385359007 hasAuthorship W4385359007A5063889963 @default.
- W4385359007 hasBestOaLocation W43853590071 @default.
- W4385359007 hasConcept C106131492 @default.
- W4385359007 hasConcept C11413529 @default.
- W4385359007 hasConcept C12426560 @default.
- W4385359007 hasConcept C126255220 @default.
- W4385359007 hasConcept C127413603 @default.
- W4385359007 hasConcept C140779682 @default.
- W4385359007 hasConcept C144024400 @default.
- W4385359007 hasConcept C146978453 @default.
- W4385359007 hasConcept C149923435 @default.
- W4385359007 hasConcept C204323151 @default.
- W4385359007 hasConcept C2524010 @default.
- W4385359007 hasConcept C2908647359 @default.
- W4385359007 hasConcept C31972630 @default.
- W4385359007 hasConcept C33923547 @default.
- W4385359007 hasConcept C41008148 @default.
- W4385359007 hasConcept C8880873 @default.
- W4385359007 hasConceptScore W4385359007C106131492 @default.
- W4385359007 hasConceptScore W4385359007C11413529 @default.
- W4385359007 hasConceptScore W4385359007C12426560 @default.
- W4385359007 hasConceptScore W4385359007C126255220 @default.
- W4385359007 hasConceptScore W4385359007C127413603 @default.
- W4385359007 hasConceptScore W4385359007C140779682 @default.
- W4385359007 hasConceptScore W4385359007C144024400 @default.
- W4385359007 hasConceptScore W4385359007C146978453 @default.
- W4385359007 hasConceptScore W4385359007C149923435 @default.
- W4385359007 hasConceptScore W4385359007C204323151 @default.
- W4385359007 hasConceptScore W4385359007C2524010 @default.
- W4385359007 hasConceptScore W4385359007C2908647359 @default.
- W4385359007 hasConceptScore W4385359007C31972630 @default.
- W4385359007 hasConceptScore W4385359007C33923547 @default.
- W4385359007 hasConceptScore W4385359007C41008148 @default.
- W4385359007 hasConceptScore W4385359007C8880873 @default.
- W4385359007 hasIssue "15" @default.
- W4385359007 hasLocation W43853590071 @default.
- W4385359007 hasOpenAccess W4385359007 @default.
- W4385359007 hasPrimaryLocation W43853590071 @default.
- W4385359007 hasRelatedWork W1823843393 @default.
- W4385359007 hasRelatedWork W1972534725 @default.
- W4385359007 hasRelatedWork W2059314720 @default.
- W4385359007 hasRelatedWork W2149877711 @default.
- W4385359007 hasRelatedWork W2153913439 @default.
- W4385359007 hasRelatedWork W2331145903 @default.