Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385364102> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4385364102 abstract "Purpose Sarcasm is a linguistic expression that usually carries the opposite meaning of what is being said by words, thus making it difficult for machines to discover the actual meaning. It is mainly distinguished by the inflection with which it is spoken, with an undercurrent of irony, and is largely dependent on context, which makes it a difficult task for computational analysis. Moreover, sarcasm expresses negative sentiments using positive words, allowing it to easily confuse sentiment analysis models. This paper aims to demonstrate the task of sarcasm detection using the approach of machine and deep learning. Design/methodology/approach For the purpose of sarcasm detection, machine and deep learning models were used on a data set consisting of 1.3 million social media comments, including both sarcastic and non-sarcastic comments. The data set was pre-processed using natural language processing methods, and additional features were extracted and analysed. Several machine learning models, including logistic regression, ridge regression, linear support vector and support vector machines, along with two deep learning models based on bidirectional long short-term memory and one bidirectional encoder representations from transformers (BERT)-based model, were implemented, evaluated and compared. Findings The performance of machine and deep learning models was compared in the task of sarcasm detection, and possible ways of improvement were discussed. Deep learning models showed more promise, performance-wise, for this type of task. Specifically, a state-of-the-art model in natural language processing, namely, BERT-based model, outperformed other machine and deep learning models. Originality/value This study compared the performance of the various machine and deep learning models in the task of sarcasm detection using the data set of 1.3 million comments from social media." @default.
- W4385364102 created "2023-07-29" @default.
- W4385364102 creator A5080867167 @default.
- W4385364102 creator A5085101798 @default.
- W4385364102 date "2023-07-31" @default.
- W4385364102 modified "2023-10-16" @default.
- W4385364102 title "Sarcasm detection in online comments using machine learning" @default.
- W4385364102 cites W2038634595 @default.
- W4385364102 cites W2157961599 @default.
- W4385364102 cites W2264685884 @default.
- W4385364102 cites W2462309427 @default.
- W4385364102 cites W2513138008 @default.
- W4385364102 cites W2588225831 @default.
- W4385364102 cites W2732264101 @default.
- W4385364102 cites W2888643222 @default.
- W4385364102 cites W2958827184 @default.
- W4385364102 cites W2991568321 @default.
- W4385364102 cites W3015642072 @default.
- W4385364102 cites W3036280612 @default.
- W4385364102 cites W3045883114 @default.
- W4385364102 cites W3096786462 @default.
- W4385364102 cites W3208367432 @default.
- W4385364102 cites W4200296128 @default.
- W4385364102 cites W4220922805 @default.
- W4385364102 cites W4226418765 @default.
- W4385364102 cites W4285391446 @default.
- W4385364102 cites W4292687057 @default.
- W4385364102 cites W4308918107 @default.
- W4385364102 cites W4312655455 @default.
- W4385364102 cites W4318832809 @default.
- W4385364102 cites W4320497091 @default.
- W4385364102 cites W4322588006 @default.
- W4385364102 cites W4360851150 @default.
- W4385364102 cites W4360897240 @default.
- W4385364102 cites W4362634450 @default.
- W4385364102 cites W4367184261 @default.
- W4385364102 doi "https://doi.org/10.1108/idd-01-2023-0002" @default.
- W4385364102 hasPublicationYear "2023" @default.
- W4385364102 type Work @default.
- W4385364102 citedByCount "0" @default.
- W4385364102 crossrefType "journal-article" @default.
- W4385364102 hasAuthorship W4385364102A5080867167 @default.
- W4385364102 hasAuthorship W4385364102A5085101798 @default.
- W4385364102 hasBestOaLocation W43853641021 @default.
- W4385364102 hasConcept C101738243 @default.
- W4385364102 hasConcept C108583219 @default.
- W4385364102 hasConcept C119857082 @default.
- W4385364102 hasConcept C12267149 @default.
- W4385364102 hasConcept C138885662 @default.
- W4385364102 hasConcept C154945302 @default.
- W4385364102 hasConcept C204321447 @default.
- W4385364102 hasConcept C2776207355 @default.
- W4385364102 hasConcept C2779975665 @default.
- W4385364102 hasConcept C41008148 @default.
- W4385364102 hasConcept C41895202 @default.
- W4385364102 hasConcept C66402592 @default.
- W4385364102 hasConceptScore W4385364102C101738243 @default.
- W4385364102 hasConceptScore W4385364102C108583219 @default.
- W4385364102 hasConceptScore W4385364102C119857082 @default.
- W4385364102 hasConceptScore W4385364102C12267149 @default.
- W4385364102 hasConceptScore W4385364102C138885662 @default.
- W4385364102 hasConceptScore W4385364102C154945302 @default.
- W4385364102 hasConceptScore W4385364102C204321447 @default.
- W4385364102 hasConceptScore W4385364102C2776207355 @default.
- W4385364102 hasConceptScore W4385364102C2779975665 @default.
- W4385364102 hasConceptScore W4385364102C41008148 @default.
- W4385364102 hasConceptScore W4385364102C41895202 @default.
- W4385364102 hasConceptScore W4385364102C66402592 @default.
- W4385364102 hasLocation W43853641021 @default.
- W4385364102 hasOpenAccess W4385364102 @default.
- W4385364102 hasPrimaryLocation W43853641021 @default.
- W4385364102 hasRelatedWork W2669956259 @default.
- W4385364102 hasRelatedWork W2939353110 @default.
- W4385364102 hasRelatedWork W3165463024 @default.
- W4385364102 hasRelatedWork W3192794374 @default.
- W4385364102 hasRelatedWork W4223943233 @default.
- W4385364102 hasRelatedWork W4287178339 @default.
- W4385364102 hasRelatedWork W4312200629 @default.
- W4385364102 hasRelatedWork W4327774331 @default.
- W4385364102 hasRelatedWork W4360585206 @default.
- W4385364102 hasRelatedWork W4380075502 @default.
- W4385364102 isParatext "false" @default.
- W4385364102 isRetracted "false" @default.
- W4385364102 workType "article" @default.