Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385364164> ?p ?o ?g. }
- W4385364164 endingPage "120278" @default.
- W4385364164 startingPage "120278" @default.
- W4385364164 abstract "The relationship between brain functional connectivity and structural connectivity has caught extensive attention of the neuroscience community, commonly inferred using mathematical modeling. Among many modeling approaches, spectral graph model (SGM) is distinctive as it has a closed-form solution of the wide-band frequency spectra of brain oscillations, requiring only global biophysically interpretable parameters. While SGM is parsimonious in parameters, the determination of SGM parameters is non-trivial. Prior works on SGM determine the parameters through a computational intensive annealing algorithm, which only provides a point estimate with no confidence intervals for parameter estimates. To fill this gap, we incorporate the simulation-based inference (SBI) algorithm and develop a Bayesian procedure for inferring the posterior distribution of the SGM parameters. Furthermore, using SBI dramatically reduces the computational burden for inferring the SGM parameters. We evaluate the proposed SBI-SGM framework on the resting-state magnetoencephalography recordings from healthy subjects and show that the proposed procedure has similar performance to the annealing algorithm in recovering power spectra and the spatial distribution of the alpha frequency band. In addition, we also analyze the correlations among the parameters and their uncertainty with the posterior distribution which cannot be done with annealing inference. These analyses provide a richer understanding of the interactions among biophysical parameters of the SGM. In general, the use of simulation-based Bayesian inference enables robust and efficient computations of generative model parameter uncertainties and may pave the way for the use of generative models in clinical translation applications." @default.
- W4385364164 created "2023-07-29" @default.
- W4385364164 creator A5020604985 @default.
- W4385364164 creator A5028325717 @default.
- W4385364164 creator A5029124777 @default.
- W4385364164 creator A5035006868 @default.
- W4385364164 creator A5047805495 @default.
- W4385364164 date "2023-10-01" @default.
- W4385364164 modified "2023-09-27" @default.
- W4385364164 title "Bayesian inference of a spectral graph model for brain oscillations" @default.
- W4385364164 cites W1967931162 @default.
- W4385364164 cites W1973272857 @default.
- W4385364164 cites W1974192412 @default.
- W4385364164 cites W1979416967 @default.
- W4385364164 cites W1979426401 @default.
- W4385364164 cites W1983537704 @default.
- W4385364164 cites W1985220467 @default.
- W4385364164 cites W1987924998 @default.
- W4385364164 cites W1991883237 @default.
- W4385364164 cites W1992476998 @default.
- W4385364164 cites W1994341528 @default.
- W4385364164 cites W1999653836 @default.
- W4385364164 cites W2002807356 @default.
- W4385364164 cites W2004293194 @default.
- W4385364164 cites W2014022174 @default.
- W4385364164 cites W2022548785 @default.
- W4385364164 cites W2022671987 @default.
- W4385364164 cites W2024892001 @default.
- W4385364164 cites W2033881971 @default.
- W4385364164 cites W2036682006 @default.
- W4385364164 cites W2056423697 @default.
- W4385364164 cites W2074725578 @default.
- W4385364164 cites W2076496506 @default.
- W4385364164 cites W2085438263 @default.
- W4385364164 cites W2087231528 @default.
- W4385364164 cites W2088905367 @default.
- W4385364164 cites W2096935768 @default.
- W4385364164 cites W2101135654 @default.
- W4385364164 cites W2105504969 @default.
- W4385364164 cites W2107692942 @default.
- W4385364164 cites W2124995442 @default.
- W4385364164 cites W2131181615 @default.
- W4385364164 cites W2158592797 @default.
- W4385364164 cites W2164350703 @default.
- W4385364164 cites W2164727176 @default.
- W4385364164 cites W2203684141 @default.
- W4385364164 cites W2402346616 @default.
- W4385364164 cites W2473798019 @default.
- W4385364164 cites W2590144118 @default.
- W4385364164 cites W2597410197 @default.
- W4385364164 cites W2793520800 @default.
- W4385364164 cites W2833620410 @default.
- W4385364164 cites W2911737192 @default.
- W4385364164 cites W2949436272 @default.
- W4385364164 cites W2950603596 @default.
- W4385364164 cites W2963956545 @default.
- W4385364164 cites W2973612572 @default.
- W4385364164 cites W2977883299 @default.
- W4385364164 cites W3007736625 @default.
- W4385364164 cites W3012806516 @default.
- W4385364164 cites W3031514878 @default.
- W4385364164 cites W3037579089 @default.
- W4385364164 cites W3081344392 @default.
- W4385364164 cites W3087344693 @default.
- W4385364164 cites W3099967679 @default.
- W4385364164 cites W3125537303 @default.
- W4385364164 cites W3210828232 @default.
- W4385364164 cites W4220700523 @default.
- W4385364164 cites W4293555115 @default.
- W4385364164 cites W952004852 @default.
- W4385364164 doi "https://doi.org/10.1016/j.neuroimage.2023.120278" @default.
- W4385364164 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37516373" @default.
- W4385364164 hasPublicationYear "2023" @default.
- W4385364164 type Work @default.
- W4385364164 citedByCount "0" @default.
- W4385364164 crossrefType "journal-article" @default.
- W4385364164 hasAuthorship W4385364164A5020604985 @default.
- W4385364164 hasAuthorship W4385364164A5028325717 @default.
- W4385364164 hasAuthorship W4385364164A5029124777 @default.
- W4385364164 hasAuthorship W4385364164A5035006868 @default.
- W4385364164 hasAuthorship W4385364164A5047805495 @default.
- W4385364164 hasBestOaLocation W43853641641 @default.
- W4385364164 hasConcept C107673813 @default.
- W4385364164 hasConcept C11413529 @default.
- W4385364164 hasConcept C119857082 @default.
- W4385364164 hasConcept C126980161 @default.
- W4385364164 hasConcept C132525143 @default.
- W4385364164 hasConcept C153180895 @default.
- W4385364164 hasConcept C154945302 @default.
- W4385364164 hasConcept C160234255 @default.
- W4385364164 hasConcept C167966045 @default.
- W4385364164 hasConcept C2776214188 @default.
- W4385364164 hasConcept C2779377595 @default.
- W4385364164 hasConcept C39890363 @default.
- W4385364164 hasConcept C41008148 @default.
- W4385364164 hasConcept C57830394 @default.
- W4385364164 hasConcept C80444323 @default.
- W4385364164 hasConceptScore W4385364164C107673813 @default.