Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385366705> ?p ?o ?g. }
- W4385366705 endingPage "8613" @default.
- W4385366705 startingPage "8613" @default.
- W4385366705 abstract "Essential proteins are vital for maintaining life activities and play a crucial role in biological processes. Identifying essential proteins is of utmost importance as it helps in understanding the minimal requirements for cell life, discovering pathogenic genes and drug targets, diagnosing diseases, and comprehending the mechanism of biological evolution. The latest research suggests that integrating protein–protein interaction (PPI) networks and relevant biological sequence features can enhance the accuracy and robustness of essential protein identification. In this paper, a deep neural network (DNN) method was used to identify a yeast essential protein, which was named IYEPDNN. The method combines gene expression profiles, PPI networks, and orthology as input features to improve the accuracy of DNN while reducing computational complexity. To enhance the robustness of the yeast dataset, the common least squares method is used to supplement absenting data. The correctness and effectiveness of the IYEPDNN method are verified using the DIP and GAVIN databases. Our experimental results demonstrate that IYEPDNN achieves an accuracy of 84%, and it outperforms state-of-the-art methods (WDC, PeC, OGN, ETBUPPI, RWAMVL, etc.) in terms of the number of essential proteins identified. The findings of this study demonstrate that the correlation between features plays a crucial role in enhancing the accuracy of essential protein prediction. Additionally, selecting the appropriate training data can effectively address the issue of imbalanced training data in essential protein identification." @default.
- W4385366705 created "2023-07-29" @default.
- W4385366705 creator A5012999943 @default.
- W4385366705 creator A5067919133 @default.
- W4385366705 creator A5076440536 @default.
- W4385366705 date "2023-07-26" @default.
- W4385366705 modified "2023-09-26" @default.
- W4385366705 title "A Framework for Identifying Essential Proteins with Hybridizing Deep Neural Network and Ordinary Least Squares" @default.
- W4385366705 cites W1527290996 @default.
- W4385366705 cites W1973758399 @default.
- W4385366705 cites W1988496202 @default.
- W4385366705 cites W1998152384 @default.
- W4385366705 cites W2007245700 @default.
- W4385366705 cites W2017975254 @default.
- W4385366705 cites W2030530458 @default.
- W4385366705 cites W2031103178 @default.
- W4385366705 cites W2036799174 @default.
- W4385366705 cites W2050721857 @default.
- W4385366705 cites W2051510684 @default.
- W4385366705 cites W2074443723 @default.
- W4385366705 cites W2082202339 @default.
- W4385366705 cites W2088590769 @default.
- W4385366705 cites W2105089945 @default.
- W4385366705 cites W2113553645 @default.
- W4385366705 cites W2119114096 @default.
- W4385366705 cites W2126134883 @default.
- W4385366705 cites W2132582966 @default.
- W4385366705 cites W2154003061 @default.
- W4385366705 cites W2160642395 @default.
- W4385366705 cites W2467366894 @default.
- W4385366705 cites W2517915074 @default.
- W4385366705 cites W2605674602 @default.
- W4385366705 cites W2613994501 @default.
- W4385366705 cites W2790765877 @default.
- W4385366705 cites W2797761902 @default.
- W4385366705 cites W2911115880 @default.
- W4385366705 cites W2945677156 @default.
- W4385366705 cites W2952874336 @default.
- W4385366705 cites W3008850983 @default.
- W4385366705 cites W3044138550 @default.
- W4385366705 cites W3106840496 @default.
- W4385366705 cites W3117350813 @default.
- W4385366705 cites W3148629189 @default.
- W4385366705 cites W3155030562 @default.
- W4385366705 cites W3157875067 @default.
- W4385366705 cites W3159878283 @default.
- W4385366705 cites W3162389729 @default.
- W4385366705 cites W3187503419 @default.
- W4385366705 cites W4213122928 @default.
- W4385366705 cites W4294310652 @default.
- W4385366705 cites W4312775032 @default.
- W4385366705 cites W4320525875 @default.
- W4385366705 doi "https://doi.org/10.3390/app13158613" @default.
- W4385366705 hasPublicationYear "2023" @default.
- W4385366705 type Work @default.
- W4385366705 citedByCount "0" @default.
- W4385366705 crossrefType "journal-article" @default.
- W4385366705 hasAuthorship W4385366705A5012999943 @default.
- W4385366705 hasAuthorship W4385366705A5067919133 @default.
- W4385366705 hasAuthorship W4385366705A5076440536 @default.
- W4385366705 hasBestOaLocation W43853667051 @default.
- W4385366705 hasConcept C10010492 @default.
- W4385366705 hasConcept C104317684 @default.
- W4385366705 hasConcept C11413529 @default.
- W4385366705 hasConcept C116834253 @default.
- W4385366705 hasConcept C119857082 @default.
- W4385366705 hasConcept C124101348 @default.
- W4385366705 hasConcept C154945302 @default.
- W4385366705 hasConcept C167625842 @default.
- W4385366705 hasConcept C201797286 @default.
- W4385366705 hasConcept C41008148 @default.
- W4385366705 hasConcept C50644808 @default.
- W4385366705 hasConcept C54355233 @default.
- W4385366705 hasConcept C55439883 @default.
- W4385366705 hasConcept C59822182 @default.
- W4385366705 hasConcept C60644358 @default.
- W4385366705 hasConcept C63479239 @default.
- W4385366705 hasConcept C86803240 @default.
- W4385366705 hasConceptScore W4385366705C10010492 @default.
- W4385366705 hasConceptScore W4385366705C104317684 @default.
- W4385366705 hasConceptScore W4385366705C11413529 @default.
- W4385366705 hasConceptScore W4385366705C116834253 @default.
- W4385366705 hasConceptScore W4385366705C119857082 @default.
- W4385366705 hasConceptScore W4385366705C124101348 @default.
- W4385366705 hasConceptScore W4385366705C154945302 @default.
- W4385366705 hasConceptScore W4385366705C167625842 @default.
- W4385366705 hasConceptScore W4385366705C201797286 @default.
- W4385366705 hasConceptScore W4385366705C41008148 @default.
- W4385366705 hasConceptScore W4385366705C50644808 @default.
- W4385366705 hasConceptScore W4385366705C54355233 @default.
- W4385366705 hasConceptScore W4385366705C55439883 @default.
- W4385366705 hasConceptScore W4385366705C59822182 @default.
- W4385366705 hasConceptScore W4385366705C60644358 @default.
- W4385366705 hasConceptScore W4385366705C63479239 @default.
- W4385366705 hasConceptScore W4385366705C86803240 @default.
- W4385366705 hasIssue "15" @default.
- W4385366705 hasLocation W43853667051 @default.
- W4385366705 hasOpenAccess W4385366705 @default.